NEC

DeepJoin: Joinable Table Discovery with Pre-trained Language Models

Yuyang Dong, Chuan xiao Takuma Nozawa, Masafumi Enomoto, Masafumi Oyamada

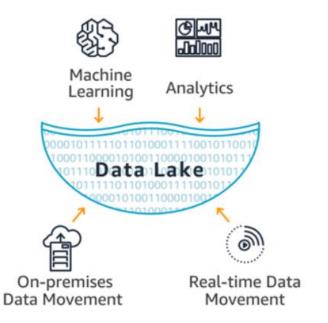
© NEC Corporation 2023

Background: what is a data lake?

- Data lake is a data repository that stores a large of data.
- In this work, we focus on how to efficient discovery <u>tabular data</u> (e.g., csv tables) from large table sets like data lake.

Race	Population	Median Age
White	234,370,202	42.0
Black	40,610,815	32.7
American Indian/ Alaska Native	2,632,102	31.7
Hawaiian/ Guamanian/Samoan	570,116	29.7

Population



https://aws.amazon.com/big-data/datalakes-and-analytics/what-is-a-data-lake/

Background: what is table join?

Black

Join is an essential operation that connect two or more tables

41,511

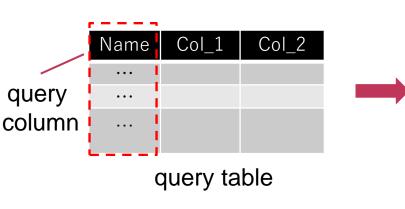
		join						
Race	Income		Race		Population	Median Age		
White	65,902		White		234,370,202	42.0		
Black	41,511		Black		40,610,815	32.7		
Mainland Indigenous	44,772		American In Alaska Nativ		2,632,102	31.7		
Pacific Islander	61,911		Hawaiian/ Guamanian/Samoan		570,116	29.7		
Median house	ne	,		Population				
equi-join								
	Race	income	Population	Median Age				
	White	65,902	234,370,202	42.0				

40,610,815

32.7

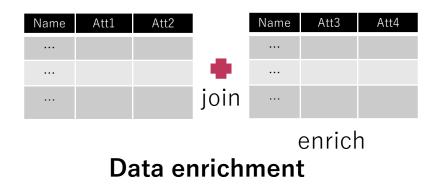
Joinable table discovery Problem

Given a query table, find joinable tables from data lakes



Applications:





Problem definition

- Given a query column Q, a collection of columns R
- Find top-k columns with the highest joinability J(.)
- Joinability between Q and a target column $X: J(Q, X) = |Q_M| / |Q|$
- $\diamond Q_M$ is the matching records between Q and X
- ◆ For example, find tables with equi-join: $Q_M = Q \cap X$



- General: Need support any kind of joinability
 - Idea : A learning base approach can adjust different joinability with different training data

	Join-type	Approach	Problem
LSH-Ensemble VLDB' 16	Equi	Rule-base minhash-LSH	Threshold Search
JOSIE SIGMOD' 19	Equi	Rule-base inverted-index	Top-k search
PEXESO ICDE' 21	Semantic	Rule-base tree-base-index + inverted index	Threshold Search
NextiaJD, EDBT' 21	Any	Learning-base Random forest	Classification
DLN, VLDB' 21	Any	Learning-base Random forest	Classification
Deep-join	Any	Learning-base Pretrain language model + Ann index	Top-k Search

Efficient: consider both accuracy and speed

Accuracy

Need a good model to predict joinability correctly

• Idea 1: Using Pretrained Language Model (PLM)

Speed problem

Efficient: consider both accuracy and speed

Accuracy

Need a good model to predict joinability

• Idea 1: Using Pretrained Language Model (PLM)

Speed problem

If predict with pairwise column -> O(n), too slow and too cost

•Idea 2:

- Using Embedding based retrieval with PLM encoder
- Efficient search of top-k embedding vectors with ANN index -> O(logn)

Efficient: consider both accuracy and speed

Accuracy

Need a good model to predict joinability

- Idea 1: Using Pretrained Language Model (PLM)
- Need a good embedding for column joinability
 - Idea 3: PLM encoder + Metric learning
- Speed problem
 - If predict with pairwise column -> O(n), too slow
 - •Idea 2:
 - Using Embedding based retrieval with **PLM encoder**
 - Search top-k with ANN index -> O(logn)

Efficient: consider both accuracy and speed

Accuracy

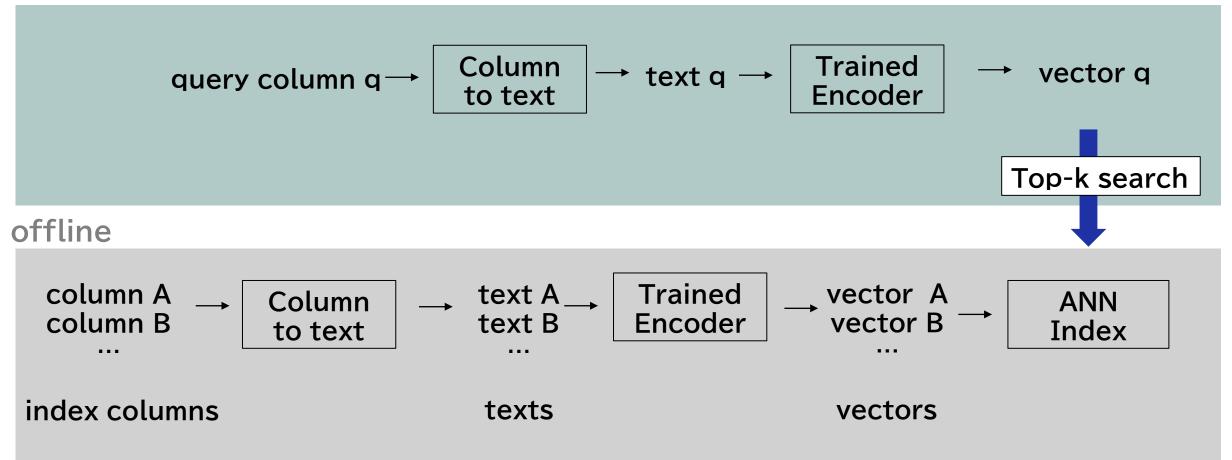
Need a good model to predict joinability

- Idea 1: Using Pretrained Language Model (PLM)
- Need a good embedding for column joinability
 - Idea 3: PLM encoder + Metric learning
- Speed problem
 - If predict with pairwise column -> O(n), too slow
 - •Idea 2:
 - Using Embedding based retrieval with **PLM encoder**
 - Search top-k with ANN index -> O(logn)

Deep-join

Overview

online



Column to text

Column to text for LM

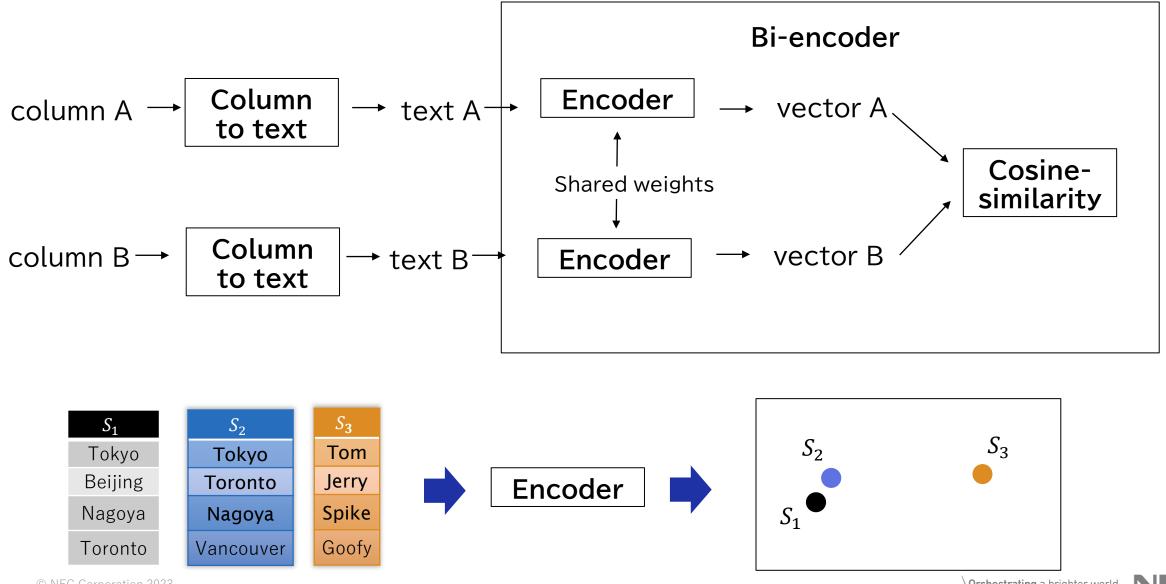
tab_context

tab_title

		The Population Census shows that Japan had 55.70 million private households. The Population
Pattern name	Template	Census shows that Japan had 55.70 Of that total,
col	\$col_records\$	54.2 percent were nuclear-family households, and 38.1 percent were one-person households.
colname-col	<pre>\$col_name\$: \$col_records\$.</pre>	$col_name \longrightarrow$ City Population Area
colname-col- intotal	<pre>\$col_name\$: \$col_records\$. In total \$n\$ unique records.</pre>	Tokyo
colname-col- context	<pre>\$col_name\$: \$col_records\$. \$tab_context\$</pre>	Tsukuba Nagoya
title-colname- col	<pre>\$tab_title\$. \$col_name\$: \$col_records\$.</pre>	col_records Kawasaki
title-colname- col-intotal	<pre>\$tab_title\$. \$col_name\$: \$col_records\$. In total \$n\$ unique records.</pre>	Statistics of Japanese cities
		\uparrow

Text: <u>"City</u> of statistics of Japanese cities contains <u>4</u> values: <u>Tokyo, Tsukuba, Nagoya, Kawasaki</u>"

Bi-encoder architecture



Training

Loss function

- Multiple negative ranking loss
- Minimize the approximated mean negative log probability

$$L(\mathbf{X}, \mathbf{Y}) = -\frac{1}{N} \sum_{i=1}^{N} \log P_{\text{approx}}(Y_i \mid X_i)$$
$$= -\frac{1}{N} \sum_{i=1}^{N} \left[S(X_i, Y_i), -\log \sum_{j=1}^{N} \exp\left(S(X_i, Y_j)\right) \right].$$

Negative sample

In-batch random negatives (In exp. better than add some hard negative)

Data augmentation

Random shuffling the cells in column

Experiment setting

Dataset

- WDC webtable
- Wikitable
- Sample 1M columns and 20K training positive pairs (equi, semantic)

Compare methods

- Minhash-lsh (VLDB16)
- JOSIE (SIGMOD19)
- Fasttext, BERT, MPNET emb
- •TaBERT (ACL20)
- •TURL (VLDB20)
- Deep-join implement
 - Bi-encoder: sentence-BERT
 - Encoder: BERT, MPNet
 - ANN index: FAISS IVFPQ-HNSW

Experiment: Accuracy

 Deep-join is better than compared methods with up to +15% in pre@k and +16% in NDCG@k

	Precision@k				NDCG@k					
Methods	<i>k</i> = 10	20	30	40	50	<i>k</i> = 10	20	30	40	50
Webtable										
LSH Ensemble	0.634	0.647	0.656	0.676	0.688	0.715	0.714	0.701	0.702	0.698
fastText	0.680	0.726	0.752	0.754	0.773	0.731	0.721	0.743	0.748	0.764
BERT	0.652	0.695	0.712	0.722	0.729	0.698	0.713	0.708	0.707	0.708
MPNet	0.610	0.629	0.644	0.649	0.654	0.674	0.677	0.678	0.680	0.677
TaBERT	0.622	0.637	0.645	0.656	0.671	0.694	0.685	0.690	0.693	0.691
TURL	0.653	0.669	0.689	0.711	0.721	0.688	0.706	0.716	0.727	0.732
MLP	0.683	0.719	0.755	0.758	0.778	0.737	0.735	0.748	0.755	0.769
DeepJoin _{DistilBERT} (ours)	0.702	0.741	0.775	0.793	0.805	0.744	0.752	0.758	0.761	0.788
DeepJoin _{MPNet} (ours)	0.732	0.775	0.791	0.812	0.832	0.768	0.786	0.799	0.803	0.822
			W	vikitable						
LSH Ensemble	0.480	0.450	0.466	0.470	0.474	0.714	0.688	0.681	0.674	0.672
fastText	0.574	0.551	0.581	0.605	0.621	0.799	0.794	0.791	0.793	0.791
BERT	0.436	0.460	0.497	0.520	0.541	0.719	0.721	0.731	0.736	0.740
MPNet	0.442	0.464	0.504	0.524	0.543	0.711	0.721	0.729	0.735	0.736
TaBERT	0.431	0.445	0.488	0.520	0.539	0.701	0.708	0.732	0.725	0.737
TURL	0.504	0.525	0.529	0.545	0.578	0.707	0.711	0.745	0.766	0.778
MLP	0.578	0.576	0.585	0.610	0.619	0.801	0.802	0.800	0.804	0.802
DeepJoin _{DistilBERT} (ours)	0.588	0.593	0.612	0.635	0.807	0.813	0.822	0.825	0.823	0.827
DeepJoin _{MPNet} (ours)	0.614	0.622	0.641	0.666	0.678	0.821	0.824	0.830	0.833	0.833

Table 3: Accuracy of equi-joins.

16 © NEC Corporation 2023

trating a brighter world

Experiment: Speed

- Embedding based retrieval with ANN index is over 10x faster than traditional minhash-LSH and inverted-index
- Deep-join needs encode query online
 - CPU environment
 - slower than fasttext
 - GPU environment
 - Similar level of speed to fasttext

Table 14: Processing time per query, varying k.

	query encoding (ms)	total (ms)						
Methods	1 2 2 2 2 2 2 2 2	k = 10	20	30	40	50		
Webtable, equi-joins								
LSH Ensemble [61]	-	496	506	590	595	508		
JOSIE [59]	-	535	556	578	580	506		
fastText	9	10.3	10.5	10.2	10.8	11.1		
DeepJoin (CPU)	66	67.1	67.1	67.1	67.2	68.1		
DeepJoin (GPU)	7	8.4	8.1	8.2	8.1	8.0		
Webtable, semantic joins								
PEXESO	-	2345	2444	2356	2754	2566		
DeepJoin (CPU)	74	75.6	76.8	76.1	75.8	76.1		
DeepJoin (GPU)	7	8.1	8.3	8.0	8.2	8.4		
Wikitable, equi-joins								
LSH Ensemble [61]	-	652	720	715	678	736		
JOSIE [59]	-	647	667	708	697	788		
fastText	6	7.4	7.2	7.8	7.3	7.7		
DeepJoin (CPU)	76	77.1	78.1	77.4	77.5	77.6		
DeepJoin (GPU)	5	6.3	7.0	6.6	6.7	6.4		
Wikitable, semantic joins								
PEXESO	-	2655	2776	2557	2743	2789		
DeepJoin (CPU)	86	87.4	87.3	87.1	87.2	87.7		
DeepJoin (GPU)	9	10.5	11	10.2	10.7	10.4		

Thanks! Question?

Orchestrating a brighter world

