
© NEC Corporation 2023

DeepJoin: Joinable Table Discovery with

Pre-trained Language Models

Yuyang Dong, Chuan xiao Takuma Nozawa, Masafumi Enomoto, Masafumi Oyamada

© NEC Corporation 20232

Background: what is a data lake?

◆ Data lake is a data repository that stores a large of data.

◆ In this work, we focus on how to efficient discovery tabular data (e.g.,

csv tables) from large table sets like data lake.

Race Population Median Age

White 234,370,202 42.0

Black 40,610,815 32.7

American Indian/
Alaska Native

2,632,102 31.7

Hawaiian/
Guamanian/Samoan

570,116 29.7

Population

https://aws.amazon.com/big-data/datalakes-and-analytics/what-is-a-data-lake/

© NEC Corporation 20233

Background: what is table join?

◆ Join is an essential operation that connect two or more tables

Race Population Median Age

White 234,370,202 42.0

Black 40,610,815 32.7

American Indian/
Alaska Native

2,632,102 31.7

Hawaiian/
Guamanian/Samoan

570,116 29.7

Population

Race Income

White 65,902

Black 41,511

Mainland Indigenous 44,772

Pacific Islander 61,911

Median household income

Race income Population Median Age

White 65,902 234,370,202 42.0

Black 41,511 40,610,815 32.7

join

equi-join

© NEC Corporation 20234

Joinable table discovery Problem

◆ Given a query table, find joinable tables from data lakes

◆ Applications:

Data Lake
query table

joinable tables

Name Col_1 Col_2

…
…

…

query

column

Name Att1 Att2

…

…

…

enrich

Name Att3 Att4

…

…

…join

Data recommendation Data enrichment Data management

© NEC Corporation 20235

Problem definition

◆ Given a query column 𝑸, a collection of columns 𝑹

◆ Find top-k columns with the highest joinability 𝐉 .

◆ Joinability between 𝑸 and a target column 𝑿: 𝐉(𝐐, 𝐗)= |𝑸𝑴| / |𝑸|

◆ 𝑸𝑴 is the matching records between 𝑸 and 𝑿

◆ For example, find tables with equi-join: 𝑸𝑴 = 𝑸 ∩ 𝑿

𝑄

Tokyo

New York

Vancouver

𝑋1

Tokyo

Beijing

Vancouver

Toronto

…

𝑋𝑛

…

R

𝑄 ∩ 𝑋1 = {“Tokyo, “Vancouver”}
𝐽 𝑄, 𝑋1 = 2/3

top-k search

Query column

© NEC Corporation 20236

Research motivation: general and efficient

Join-type Approach Problem

LSH-Ensemble
VLDB’16

Equi Rule-base
minhash-LSH

Threshold Search

JOSIE
SIGMOD’19

Equi Rule-base
inverted-index

Top-k search

PEXESO
ICDE’21

Semantic Rule-base
tree-base-index + inverted index

Threshold Search

NextiaJD,
EDBT’21

Any Learning-base
Random forest

Classification

DLN，
VLDB’21

Any Learning-base
Random forest

Classification

Deep-join Any Learning-base
Pretrain language model + Ann index

Top-k Search

◆ General: Need support any kind of joinability

◼ Idea : A learning base approach can adjust different joinability with

different training data

© NEC Corporation 20237

◆ Efficient: consider both accuracy and speed

◆ Accuracy

◼Need a good model to predict joinability correctly

• Idea 1: Using Pretrained Language Model (PLM)

◆ Speed problem

Research motivation: general and efficient

© NEC Corporation 20238

◆ Efficient: consider both accuracy and speed

◆ Accuracy

◼Need a good model to predict joinability

• Idea 1: Using Pretrained Language Model (PLM)

◆ Speed problem

◼ If predict with pairwise column -> O(n), too slow and too cost

• Idea 2:

– Using Embedding based retrieval with PLM encoder

– Efficient search of top-k embedding vectors with ANN index -> O(logn)

Research motivation: general and efficient

© NEC Corporation 20239

◆ Efficient: consider both accuracy and speed

◆ Accuracy

◼Need a good model to predict joinability

• Idea 1: Using Pretrained Language Model (PLM)

◼Need a good embedding for column joinability

• Idea 3: PLM encoder + Metric learning

◆ Speed problem

◼ If predict with pairwise column -> O(n), too slow

• Idea 2:

– Using Embedding based retrieval with PLM encoder

– Search top-k with ANN index -> O(logn)

Research motivation: general and efficient

© NEC Corporation 202310

◆ Efficient: consider both accuracy and speed

◆ Accuracy

◼Need a good model to predict joinability

• Idea 1: Using Pretrained Language Model (PLM)

◼Need a good embedding for column joinability

• Idea 3: PLM encoder + Metric learning

◆ Speed problem

◼ If predict with pairwise column -> O(n), too slow

• Idea 2:

– Using Embedding based retrieval with PLM encoder

– Search top-k with ANN index -> O(logn)

Research motivation: general and efficient

Deep-join

© NEC Corporation 202311

Overview

query column q
Trained
Encoder

Column
to text

index columns

Column
to text

vector qtext q

column A
column B

…

texts

text A
text B

…

Trained
Encoder

vectors

vector A
vector B

…

ANN
Index

Top-k search

online

offline

© NEC Corporation 202312

Column to text

City Population Area

Tokyo

Tsukuba

Nagoya

Kawasaki

Statistics of Japanese cities

tab_title

col_name

col_records

The Population Census shows that Japan had
55.70 million private households. The Population
Census shows that Japan had 55.70 Of that total,
54.2 percent were nuclear-family households,
and 38.1 percent were one-person households.

tab_context

Pattern name Template

col $col_records$

colname-col col_name : $col_records$.

colname-col-
intotal

col_name : $col_records$. In total n unique
records.

colname-col-
context

col_name : $col_records$. $tab_context$

title-colname-
col

tab_title. col_name : $col_records$.

title-colname-
col-intotal

tab_title. col_name : $col_records$. In total
n unique records.

◆ Column to text for LM

Text: “City of statistics of Japanese cities contains 4 values: Tokyo, Tsukuba, Nagoya, Kawasaki”

© NEC Corporation 202313

Bi-encoder architecture

column A EncoderColumn
to text

column B EncoderColumn
to text

Shared weights

vector A

vector B

Cosine-
similarity

text A

text B

𝑆1

Tokyo

Beijing

Nagoya

Toronto

𝑆𝟑

Tom

Jerry

Spike

Goofy

𝑆2

Tokyo

Toronto

Nagoya

Vancouver

𝑆1

𝑆2 𝑆3

Encoder

Bi-encoder

© NEC Corporation 202314

Training

◆ Loss function

◼Multiple negative ranking loss

◼Minimize the approximated mean negative log probability

◆ Negative sample

◼ In-batch random negatives (In exp. better than add some hard negative)

◆ Data augmentation

◼Random shuffling the cells in column

© NEC Corporation 202315

◆ Dataset

◼WDC webtable

◼Wikitable

◼Sample 1M columns and 20K training positive pairs (equi, semantic)

◆ Compare methods

•Minhash-lsh (VLDB16)

•JOSIE (SIGMOD19)

•Fasttext, BERT, MPNET emb

•TaBERT (ACL20)

•TURL (VLDB20)

◆ Deep-join implement

◼Bi-encoder: sentence-BERT

◼ Encoder: BERT, MPNet

◼ANN index: FAISS IVFPQ-HNSW

Experiment setting

© NEC Corporation 202316

Experiment: Accuracy

◆ Deep-join is better than compared methods with up to +15% in pre@k and

+16% in NDCG@k

© NEC Corporation 202317

Experiment: Speed

◆ Embedding based retrieval with ANN

index is over 10x faster than traditional

minhash-LSH and inverted-index

◆ Deep-join needs encode query online

◼CPU environment

•slower than fasttext

◼GPU environment

•Similar level of speed to fasttext

© NEC Corporation 202318

Thanks! Question?

