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In marketing, helping manufacturers to �nd the matching preferences of potential customers for their products is an essential

work especially in e-commerce analyzing with big data. �e aggregate reverse rank query has been proposed to return top-k
customers who have more potential to buy a given product bundling than other customers, where the potential is evaluated

by the aggregate rank which de�ned as the sum of each product’s rank. �is query correctly re�ects the request only when

the customers consider the products in the product bundling equally. Unfortunately, rather than thinking products equally, in

most cases, people buy a product bundling because they appreciate a special part of the bundling. Manufacturers, such as

video games companies and cable television industries, are also willing to bundle some a�ractive products with less popular

products for the purpose of maximum bene�ts or inventory liquidation.

Inspired by the necessity of general aggregate reverse rank query for unequal thinking, we propose a weighted aggregate

reverse rank query which treats the elements in product bundling with di�erent weights to target customers from all aspects

of thought. To solve this query e�ciently, we �rst try a straightforward extension. �en we re-build the bound-and-�lter

framework for the weighted aggregate reverse rank query. We prove theoretically that the new approach �nds the optimal

bounds, and develop the highly e�cient algorithm based on these bounds. �e theoretical analysis and experimental results

demonstrated the e�cacy of the proposed methods.
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1 INTRODUCTION
Top-k query is a user-view model that can help customers �nd their favorite products and is widely used in many

practical applications [2, 10, 11]. For two di�erent datasets, user preferences and products, this model retrieves the

top k products matching a given user preference. Conversely, manufacturers must also target potential customers
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(a) User preferences and books.

(b) Rank, score and reverse 1-rank result for each book.

(c) Aggregate rank and aggregate reverse 1-rank result for each bundled books.

Fig. 1. Example of RkR and ARR queries.

for their products. Reverse k-rank query (RkR) [32], a manufacturer-view query model, solves this problem by

returning the top k user preferences for a given product. Another manufacturer-view query, aggregate reverse

rank query (ARR) [6] addressed a limitation of RkR query, allowing it to retrieve user preferences for a set of

products and help manufacturers with product bundling.

An example of RkR and ARR queries is shown in Figure 1. Five di�erent books (p1–p5) are scored on the

a�ributes “price” and “rating”. �e preferences of three users (Tom, Jerry and Spike), consist of the weights for all

a�ributes of the book. �e score of a book w.r.t to a user is found by the inner product value of the book a�ribute

and user preference vectors (Figure 1b). �e results of the reverse 1-rank query are given in the last cells of Figure

1b
1
. For example, Jerry believes that p2 is the best book, while Tom and Spike think that it is the second-best.

1
Without loss of generality, we assume that minimum values are preferable in this research.

ACM Transactions on Spatial Algorithms and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.



Weighted Aggregate Reverse Rank�eries • 1:3

Jerry is more likely to buy p2 than Tom and Spike are, based on this ranking; hence, the reverse 1-rank query

returns Jerry as a result. �e table at Figure 1c shows an example of ARR query for product bundling. In this case,

two books (p1 and p2) are bundled as a set for sale. ARR query evaluates aggregate rank (ARank) with the sum of

each book, so the bundle’s rank is 3 + 2 = 5 based on Tom’s preference. �is ARR query returns Tom as its result

(k = 1) because Tom would rank a bundle of p1 and p2 higher than others would.

1.1 Definitions
Assumptions of the product and preference databases, and the score function between them, are in line with

those in related research [6, 24, 26, 32]. �e querying problems are based on a user-product model that has two

types of database: product dataset P and user preference datasetW . Each product p ∈ P is a d-dimensional vector

that contains d non-negative scoring a�ributes. �erefore, p is represented as a point p = (p[1],p[2], ...,p[d]),
where p[i] is the a�ribute value of p in the ith dimension. Preference w ∈W is also a d-dimensional weighting

vector and w[i] is a non-negative weight that evaluates p[i], where

∑d
i=1

w[i] = 1. �e score of product p based

on preference w is de�ned as the inner product of p and w , which is expressed by f (w,p) =
∑d

i=1
w[i] · p[i]. All

products are ranked by their scores, with a minimum score preferred. A query product is denoted as q, which is

in the same space as, but not necessarily an element of P .

For a speci�c w , the rank of q is de�ned as the number of products whose score is less than q’s.

Definition 1. (rank (w,q)). Given a product dataset P , a preferencew , and a query q, the rank of q according to
w is rank (w,q) = |S |, where S ⊆ P and ∀pi ∈ S, f (w,pi ) < f (w,q) ∧ ∀pj ∈ (P − S ), f (w,pj ) ≥ f (w,q).

Reverse k-rank query[32] can retrieve top k preferences that improve q’s rank over others.

Definition 2. (reverse k-ranks query, RkR). Given a product dataset P and preference datasetW , positive

integer k , and query q, reverse k-rank query returns the set S , S ⊆W , |S | = k , such that ∀wi ∈ S,∀w j ∈ (W − S ),
rank (wi ,q) ≤ rank (w j ,q) holds.

Aggregate reverse rank query [6] extends RkR query to handle queries with more than one query point.

Definition 3. (aggregate reverse rank query, ARR). Given datasets P andW , positive integer k , and query product
setQ , ARR query returns the set S , S ⊆W , |S | = k , such that∀wi ∈ S,∀w j ∈ (W −S ),ARank (wi ,Q ) ≤ ARank (w j ,Q )
holds.

�e aggregate evaluation functions ARank were considered for �nding the sum of each rank(w,q): ARank (w,Q ) =∑
qi ∈Q rank (w,qi ).

1.2 Motivation for Weighted Aggregate Reverse Rank�ery
ARR query [6] is an essential tool for �nding potential customers for a given product bundle. However, the

aggregate rank function (ARank), which be used to evaluate the bundled products, is a simple sum operation

(ARank (w,Q ) =
∑
rank (w,q),q ∈ Q). �is is a limitation of ARR query because the summing function is only

one scenario in which ranks are evaluated in real-world applications; neither customers nor manufacturers

consider every product in the bundle to be equal in most situations. Many customers buy a product bundle

because they want some subset of the products, and they may not care much about the others. Sellers also make

use of this point, bundling unpopular products with a�ractive ones to maximize pro�ts or liquidate inventories.

For example, Xiaomi
2
, a famous cell phone company in China, always bundles a newly released cell phone

with some accessories (mobile ba�ery, cell phones case, earphone, etc.); customers have to accept this product

bundle if they want to obtain the new phone upon its release. �erefore, it is more accurate to add weights

2
h�p://www.mi.com/
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Fig. 2. WARR query results for a bundle of p1 and p2 with di�erent weights.

for di�erent products in the bundle in the market analysis of interested consumers. In addition to e-commerce,

user-product-based ARR queries can also be applied to other �elds. [6] uses ARR query with NBA player statistics

to analyze preferences for a given NBA team (of several players). In business investment, startup teams (of several

members) would like to know which angel investor is most willing to invest in them. In these cases, adding

weights to di�erent roles on an NBA or startup team is also reasonable.

�e model is closer to reality if weights are assigned for the ARR query. Inspired by this, we generalize

the ARR query and then propose a new query problem called weighted aggregate reverse rank query (WARR).

WARR query uses weights to handle the rank value of each product so that it can �nd customers using their

di�erent perspectives on products in the bundle. In this extension, the summing ARank function in the ARR
query becomes a speci�c situation in which the weights are equal to each other (αi =

1

|α | , i = 1, 2, ..., |α |).

More speci�cally, the weights αi ∈ α where

∑ |α |
i=1

αi = 1 correspond to the query products, note that this

weighted preference is di�erent from the user preference w on a�ributes. e.g.: α1 is the weighted value for

q1 in Q . �ese weights can adjust the rank of query products with a weighted ARank function (WARank):

WARank(w,Q,α ) =
∑
αi × rank (w,qi ),qi ∈ Q,αi ∈ α . Sellers and data analysts from the manufacturer can use

WARR query to analyze various marketing positions by testing product bundles with di�erent weights.

Figure 2 shows a WARR query example for {p1, p2}with two di�erent weights: {0.5, 0.5} and {0.2, 0.8}. As Figure

2(d) shows, Tom’s weighted rank of {p1, p2} is 3× 0.5+ 2× 0.5 = 2.5 when α = {0.5, 0.5} and 3× 0.2+ 2× 0.8 = 2.2
when α = {0.2, 0.8}. As with the ARR query, Tom is also the result when the weights are equal. However, for

weights {0.2, 0.8}, we want to �nd customers who consider p2 to be the main reason to buy this bundle. In this

case, Jerry’s weighted aggregate rank value is 5 × 0.2 + 1 × 0.8 = 1.8, which is the best rank among the three

people; hence, WARR query returns Jerry as its result. In this query process, WARR helps manufacturers target

Jerry, who treats p2 as a main priority.

As a generalized version, WARR follows the previous work of ARR, which was a manufacturer-view query

processing. �erefore, the weights for the query products in WARR query is assigned by the manufacturers. If we

allow customers to set weights on the products, for each customer, we need to know her preferences for such a

huge number of products and maintain them. Moreover, when a manufacturer releases a new product, it means a

new vector be added to P in our model. However, it also means to add |W | vectors to update the preference to all

customers for allowing them to assign weights to products. In our model, it makes sense that let manufacturers

assign weights to their products then issue a WARR query on these products. Speci�cally, to analysis the target

customers with the variety considering on bundled products, a manufacturer can adjust di�erent weights and

issue di�erent WARR queries, then WARR retrieves the target users under these weighted preferences. Using the

example of Figure 2, assuming that the seller of the bookshop wants to use the book p2 as the main product for

sale, so she sets the weight as (0.2, 0.8) corresponding to {p1, p2}. �en WARR can help to return Jerry as the best

target since his weighted aggregate rank is the best.

1.3 Challenges and Solutions
�ere are two challenges in e�cient processing a WARR query.

ACM Transactions on Spatial Algorithms and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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�e �rst challenge is to solve WARR queries with the bound-and-�lter framework. WARR query is a complicate

processing, it requires to evaluate the rank of each query products with respect to all users and returns the top-k
users. �e basic Naive algorithm for WARR leads a huge computation with a complexity of O ( |P | · |W | · |Q |). �e

key point is to reduce the pairwise computation between P andW . �e most relevance work is the ARR query

in [6], which o�ers the solutions that bound query products Q with two dummy points and utilizes the spatial

index R-tree to �lter data with the divide and conquer methodology (�e details are introduced in Section 4.1).

We formalize the techniques in [6] as the “bound-and-�lter” framework, it is an e�cient strategy that reduces

the computational complexity to O (loд |P | · loд |W |). WARR is a generation of the previous work ARR and has

much more complicated processing. As the example in Figure 2 demonstrates, the value of the ranking changes

with di�ering weights. �erefore, the techniques in [6] which was designed only for the products that are equal,

cannot handle the weighted ranking relationship hence cannot be extended to solve WARR query e�ectively.

To this, we design sophisticate bounding methods and �ltering strategies for the weighted ranking, and propose

a solution EFM that based on the bound-and-�lter framework (Section 4). Speci�cally, for the bounding phase,

we propose weighted aggregate rank bounds to bound Q safely. We propose a novel early stopping strategy

which takes into consideration the weights, and helps more e�cient �ltering.

�e second challenge is the optimization of the bounding phase in the bound-and-�lter framework. �e bound

of the queries Q is the core of the e�cient processing, since it determines the amount of the �ltering data for

both P andW in the �ltering phase hence signi�cantly a�ects the performance.

To this, we proposed an optimal bounding method OBM (Section 5) which �nds the optimal bounds for

an arbitrary Q then �lter more data than EFM. We proved the optimal bounding with the theory of linear

programming. It is important to note that the proposed optimal bounds are e�ective also in previous ARR query

but it helps to enhance the performance remarkable in WARR.

1.4 Contributions
�is paper makes the following contributions:

• We de�ne a new query, called weighted aggregate rank query (WARR), that extends the previous aggregate

rank query by adding weights for di�erent products in a bundle. With a variety of weights, WARR can

analyze and target di�erent types of potential customers for a given product bundle.

• We develop three solutions to process WARR queries, as existing approaches cannot be directly applied,

called SFM, EFM and OBM. SFM is a straightforward method that uses a spatial R-tree. EFM adapts the

bound-and-�lter framework of [6] to the additional weights in the WARR query. We study this �ltering

space in the bound-and-�lter framework and propose an optimal bounding approach that is proven to

�nd the tightest bound of Q . �e OBM is based on this optimal bound in bound-and-�lter framework.

�is optimal bounding strategy can also adjust into the previous ARR query.

• We conduct a thorough experimental evaluation of real-world and synthetic datasets to evaluate the

e�cacy of the proposed algorithms.

�e remainder of this paper is organized as follows: Section 2 summarizes related work. Section 3 formally

de�nes the proposed WARR query and gives a straightforward solution. Two additional novel solutions are given

in Sections 4 and 5. Experimental results are reported in Section 6 and Section 7 concludes the paper.

2 RELATED WORK
Currently, in the user-product model, the ranking is an important technique for evaluating a product based on

user preferences. In marketing analysis, such as identifying competing products or targeting potential customers,

many variants of rank-aware queries have been widely researched.
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Ranking query (top-k query). Many applications are designed for returning a limited set of ranked products

on individual user preferences, the most basic of which is the top-k query. Here, we summarize some important

work in ranking queries. Chang et al. proposed the Onion technique to pre-process and index data points in

layers with convex hulls [2] for linear optimization queries; the onion-based index can help to �lter data and

compute e�ciently. A tree-based index approach, which processes the top-k queries with a branch-and-bound

methodology, has been studied in [20]. Fagin’s algorithm [8] and the threshold algorithm (TA) [9] were proposed

to compute top-k queries over multiple sources, where each source has only a subset of a�ributes. Other variants

of the threshold-based algorithms for top-k queries were investigated in [1, 3, 14]. [11] is an important study that

describes and classi�es top-k query processing techniques in relational databases.

Reverse rank query. �e converse of rank queries, called reverse rank queries, have been studied extensively.

Reverse rank queries evaluate the rank of a query product based on user preferences and retrieve the top k users.

One of these, reverse top-k query, has been proposed in order to �nd users who treat a query product as their

top k product [24, 25]. For an e�cient reverse top-k process, Vlachou et al. [26] proposed a branch-and-bound

algorithm using a tree-based method with boundary-based registration. Vlachou et al.[23, 27] have reported

various applications of reverse top-k queries. However, Zhang et al. indicated that reverse top-k query always

returns an empty set for less-popular products [32]. To ensure 100% coverage for any given query product,

[32] proposed the reverse k-rank query, to �nd the top-k user preferences with the highest rank for a given

object among all users. [7] gives a Grid-index algorithm for e�cient processing these reverse rank queries with

high-dimensional data. [6] is the most related to our work; Dong et al. indicated that both reverse top-k and

reverse k-rank queries were designed for only one product and cannot handle the product bundling. Similar to

the cable television industry which bundles channels, companies use product bundling as a common market

strategy. [6] de�ned an aggregate reverse rank query that �nds the top-k users for a given bundled product, then

proposes tree-based algorithms (TPM, DTM) to process them e�ciently.

Other reverse and aggregate queries. In contrast to the nearest neighbor search in metric space, Korn and

Muthukrishnan [12] proposed the reverse nearest neighbor (RNN) query. For reverse k-nearest neighbor (RKNN)

queries, Yang et al. [29] carried out an in-depth investigation that analyzed and compared notable algorithms in

[4, 19, 21, 22, 30]. RKNN di�ers from reverse rank queries because it evaluates the relative Lp distance (Euclidean

distance) between two points in metric space. However, the reverse rank queries focus on absolute ranking

among all objects and use the inner product function to compute scores. Additionally, all data are the same kind

of points in one space in RKNN, while the user-product model of reverse rank queries demands that users and

products are two datasets of di�erent data spaces. Besides nearest neighbor, Yao et al. [31] proposed reverse

furthest neighbor (RFN) queries to �nd points in which the query point is deemed to be the furthest neighbor.

Wang et al. [28]. extended the RFN to RkFN queries for an arbitrary value of k and proposed an e�cient �lter

in the search space. Reverse skyline query returns a user based on the dominance of competitors’ products

[5, 13]. �e preference of a user is described as an ideal product point in this query. However, preferences are

represented as weighting vectors in reverse rank query. Tao et al. developed aggregate nearest neighbor search

(ANN) [17, 18] to retrieve points with the smallest aggregate distance to multiple query points in metric space.

3 WEIGHTED AGGREGATE REVERSE RANK QUERY
As previously mentioned, it is necessary to evaluate each query product with di�erent weights. Here, we de�ne

the function of weighted aggregate rank (WARank), then propose a new query to extend the previous ARR query

with the WARank function, namely a weighted aggregate reverse rank query.

Definition 4. (WARank(w,Q,α )). Given a dataset P , preference data w , query set Q , and weights α , where
∀αi > 0 and

∑ |α |
i=1

αi = 1, the WARank of Q based onw is WARank(w,Q,α ) =
∑
αi × rank (w,qi ),qi ∈ Q,αi ∈ α .

ACM Transactions on Spatial Algorithms and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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Symbols Description

P Product dataset.

W Preferences dataset.

Q �ery products.

α Weights for Q .

d Data dimensionality.

f (w,p) �e score of p based on w with inner product.

p[i] Value of a product p in the ith dimension.

H (w,q) �e (d-1) dimensional hyper-plane

perpendicular to w and cross q.

MBR Minimum bounding rectangle.

ep (ew) An MBR in Rtree of data set P (W ).

L[MBR], U [MBR] �e lower-le� and upper-right corners in an MBR.

Ql (Qu ) �e set of q (i )
l

(q (i )u ) in all d dimensions.

Qlow
, Qup

Bounding of Q in [6].

Qlow
opt , Q

up
opt �e Optimal bounding of Q in this paper.

Table 1. Symbols and Notation

Definition 5. (weighted aggregate reverse rank query, WARR). Given datasets P andW , positive integer k ,
and query product set Q , the WARR query returns set S , S ⊆ W , |S | = k , such that ∀wi ∈ S,∀w j ∈ (W − S ),
WARank(wi ,Q,α ) ≤WARank(w j ,Q,α ) holds.

3.1 Straightforward Filtering Method (SFM)
�e naive WARR query processing algorithm calculates WARank(w,Q,α ) for each preference w ∈W by comparing

all scores of f (w,p), p ∈ P with all scores of f (w,q), q ∈ Q . Hence, the naive algorithm is a triple-nested loop

with complexity O ( |W | · |P | · |Q |). To overcome this ine�ciency, we �rst explain a straightforward �ltering

method (SFM) that �lters dataset P .

�e geometric view of a 2-dimensional example that ranks a single q based on preference vectorw (rank (w,q))
is shown in Figure 3. �ere is a (d − 1) dimensional hyperplane denoted by H (w,q), which is a line in the 2-

dimensional example of Figure 3, that crossesq and perpendicular tow . �e rank (w,q) is equal to the number ofpi
enclosed in the half-space (the gray area) de�ned by the hyperplane H (w,q). Many previous works [6, 24, 25, 32]

have used a tree-base methodology to �nd the number of points in half-space e�ciently; in particular, R-trees

are used to index and �lter dataset P . An R-tree can group nearby points with a minimum bounding rectangle

(MBR) to �lter data at the lower-le� and upper-right borders. For example, the upper-right border of MBR e2

is in the half-space. �erefore, all points contained by e2 should be counted for the rank of q. On the contrary,

p1 and p4 should be discarded, since the lower-le� border of MBR e5 is not in the half-space. �e MBRs are

checked recursively while traversing the R-tree. We propose a straightforward method, called SFM, based on this

technique. As Algorithm 1 shows, SFM uses the tree-base method on P to process WARR straightforwardly.

4 EXTENDED FILTERING METHOD (EFM)
�e SFM solution sums the ranks for q ∈ Q individually against eachw ∈W , which is ine�cient, especially when

the cardinality ofW and Q are large. [6] proposed an e�cient bound-and-�lter framework to bound Q to avoid

checking every q, then �lterW and P by implementing a tree-based method with Q’s bounds. Unfortunately,

this technique cannot handle WARR queries. Inspired by this point, we extend and adapt the bound-and-�lter

framework for the weights of ranks in WARR query.

ACM Transactions on Spatial Algorithms and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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Fig. 3. Geometric view of the rank of q and a tree-based methodology

Algorithm 1 Straightforward �ltering method (SFM)

1: Let T denote an array to record the WARank with each w .

2: for each wi ∈W do
3: for each qj ∈ Q do
4: Tree-based �ltering and get rank (wi ,qj )
5: T [wi ]← T [wi ] + α j · rank (wi ,qj )
6: return top-k elements in T .

(a) FindWt . (b) Find Qup and Qlow .

Fig. 4. Bounding phase. (a) Finding theWt set of top-w in each dimension. (b) UsingWt to find the upper bound Qup and
lower bound Qlow of Q .

4.1 Bound-and-filter Framework.
Here, we describe the previous approach for ARR query brie�y, the bound-and-�lter framework. �e full details

can be found in [6]. �ere are two phases to this framework: bounding and �ltering.

ACM Transactions on Spatial Algorithms and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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1. Bounding. In the bounding phase, a d-element subset ofW is needed, denoted byWt = {w
(i )
t }

d
1

. �e ith

element ofWt is denoted as w (i )
t and is the most similar (in cosine similarity) to the orthonormal basis vector (ei )

of the ith dimension (w (i )
t ∈W and ∀w ∈W , cos (w (i )

t , ei ) ≥ cos (w, ei )). As Figure 4a shows, w (1)
t = w6 because

w6 is the closest vector to the orthonormal basis vector (0,1). In same way, w (2)
t = w1, thereforeWt = {w6,w1}.

�e two bounds of Q , denoted as Qup
and Q low

, are found using the following rules:

Qu = {arg max

q∈Q
f (w (i )

t ,q)}
d
i=1

(1)

Ql = {arg min

q∈Q
f (w (i )

t ,q)}
d
i=1

(2)

Qup = U [MBR (Qu )] and Q low = L[MBR (Ql )] (3)

In the geometric view shown in Figure 4b, q1 and q2 are the �rst points touched (maximum value) while sliding

perpendicular lines of w (2)
t and w (1)

t from in�nity to 0 in parallel. �en, Qup
de�ned as the right-up border of

MBR of {q1, q2}, denoted as U [MBR (Qu )] in Equation (3). Q low
is similarly found by sliding the perpendicular

lines from 0 to in�nity. Compared with the basic bounds from MBR (Q ), the bounds formed by Qup
and Q low

are

tighter.

2. Filtering. In the �ltering phase, both W and P are indexed independently with an R-tree, as in R-treep
in Figure 3 and R-treew in Figure 5a. As Figure 5b shows, for an MBR ew1 of R-treew , its upper bound U [ew1]

and Qup
form the upper hyperplane H (U [ew1],Qup ), while its lower bound L[ew1] and Q low

form the lower

H (L[ew1],Q low ). �e only data space of P that must be computed is the space sandwiched between the two

hyperplanes; hence, the gray area in the �gure is the �ltering space. For every ewi or single w in the leaf node of

R-treew , Qup
and Q low

can �lter more data than MBR (Q ) since the bounding is tighter. Figure 5c shows howW
is �ltered; a threshold value denoted asminRank is updated with the kth smallest rank while processing, since

we only want the top-k w’s. �e MBRs of w’s whose lower bounds rank greater thanminRank will be �ltered,

such as ew4 and ew5.

4.2 Re-building the Bound-and-filter Framework in WARR query.
Next, we start to introduce a solution for the WARR query which re-builds the bound-and-�lter framework.

�e intrinsic reason why the bound-and-�lter framework in [6] cannot solve WARR queries is that the �ltering

phase uses the rank of Q low
(Qup

) to indicate the lower (upper) bound of ARank (w,Q ). In particular:

rank (L[ew],Q low ) · |Q | ≤ ARank (w,Q ) ≤ rank (U [ew],Qup ) · |Q |. (4)

If the lower bound of ew is still greater than the kth smallest w ’s ARank that have been checked, no w ∈ ew is in

the top-k w’s and ew should be discarded.

Obviously, this does not work for WARR rank query, which has a series of weights for Q . In order to bound

the WARank(w,Q,α ) for an arbitrary α , we multiply the le� side of inequality (4) by the minimum value in α ,

denoted as αmin , and multiply the right side by the maximum value, αmax . �is adaptation bounds the weighted

aggregate rank as inequality (5) based on the following lemma:

αmin · rank (L[ew],Q low ) · |Q | ≤WARank (w,Q ) ≤ αmax · rank (U [ew],Qup ) · |Q |. (5)

Lemma 1. (Weighted aggregate rank bounds of Q for ew): Given a set of query points Q , an MBR ofw ’s, and a set
of weights α for Q , the lower bound of WARank(w,Q,α ) is |Q | · rank (L[ew],Q low ) · αmin and the upper bound of
WARank(w,Q,α ) is |Q | · rank (U [ew],Qup ) · αmax , where αmin and αmax are the minimum and maximum values
in α .
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(a) IndexW with R-tree. (b) Filtering space (gray area).

(c)minRank and rank bounds of MBRs.

Fig. 5. Filtering phase. (a) R-tree ofW . (b) Comparison of the filtering space of P between basic MBR bounding and Qup

(Qlow ) bounding. (c) Filtering dataW with rank bounds andminRank .

Proof. ∀qi ∈ Q , ∀wi ∈ ew , it holds that f (wi ,qi ) ≥ f (L[ew],Q low ); hence, rank (w,qi ) ≥ rank (L[ew],Q .low ).
By de�nition, becauseαmin is the minimum value inα ,WARank(w,Q,α ) =

∑
rank (w,qi )·αi ≥ |Q |·rank (L[ew],Q .low )·

αmin . Similarly, |Q | · rank (U [ew],Q .up) · αmax is the upper bound of WARank(w,Q,α ). �

4.3 Early Stopping Strategy
To further enhance the performance, we propose a novel early stopping strategy that reduces the computations

while processing WARR queries.

If the lower bound of rank given by (5) cannot �lter the ew directly, it is necessary to check the weighted

rank for all w ∈ ew and q ∈ Q . To reduce computations, we can reuse the value of rank (w,Q low ), which has

been calculated in Lemma 1, to �gure out the exact value of weighted rank. �e correctness of the re-using is

introduced and proved in the following lemma:

Lemma 2. (Correctness of computed weighted aggregate rank with Q low ): Given a set of query points Q , Q low ,w ,
and a set of weights α , the weighted aggregate rank of Q in w is equal to rank (w,Q low ) · |Q | +

∑
(rank (w,qi ) −

rank (w,Q low )) · αi

Proof. rank (w,Q low ) · |Q | +
∑
(rank (w,qi ) − rank (w,Q

low )) ·αi = rank (w,Q
low ) · |Q | +

∑
rank (w,qi ) ·αi −

rank (w,Q low )) · |Q | ·
∑
αi . Because

∑
αi = 1, the result is

∑
rank (w,qi ) · αi , which is the WARank(w,Q,α ). �
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Before the �nal computation in Lemma 2, we can �rst check Q with L[ew] and U [ew] to determine further

bounds before ge�ing through all w ∈ ew . While processing, if the current rank becomes greater than the

threshold minRank, we can early stop this process to avoid further checking. �e details is given in Corollary 3:

corollary 3. Based on Lemmas 1 and 2, it can be inferred that: |Q | ·rank (L[ew],Q low ) ·αmin ≤ rank (w,Q low ) ·
|Q | +

∑
(rank (L[ew],qi ) − rank (L[ew],Q low )) · αi ≤ rank (w,Q low ) · |Q | +

∑
(rank (w,qi ) − rank (w,Q

low )) · αi .
�e further upper bound is calculated in a similar manner.

Finally, Corollary 3 and Lemma 2 form an early stopping strategy that can terminate the algorithm and avoid

unnecessary computation when checking the weighted rank for all w ∈ ew and q ∈ Q .

4.4 EFM Algorithm
We proposed the EFM algorithm based on Lemma 1, Lemma 2 and Corollary 3. Algorithm 3 shows the details of

EFM. A k-element bu�er keeps the top-k w’s and is initialized to store the �rst k w’s ∈W and their weighted

aggregate ranks (Line 1). Lrank is the counter that records the lower bound rank. minRank is the threshold value.

First, in the bounding phase, we determine the bounds Q low
and Qup

of Q (Line 4). �en, heapw and heapp help

to traverse the R-treep and R-treew . For each ew obtained from heapw (Line 6), we traverse R-treep (Line 10-20).

If an ep located below the lower hyperplane H (L[ew],Q low ), we count the number of p ∈ ep and update Lrank
using Lemma 1 (Line 12-14). We stop and check the next ep ∈ heapp when Lrank becomes greater thanminRank
(Line 15-16). If ep is in the sandwiched space, it will be added into Cand for future processing (Line 17-18). If ep
covers the upper or lower hyperplane, its children are added into heapp (Line 19-20). A�er processing all MBRs

∈ heapp , if Lrank is less thanminRank , we �rst check all q ∈ Q based on Corollary 3 (Line 21-23). When Lrank
is still smaller thanminRank , if ew is a single w , we compute the exact WARank based on Lemma 2 and decide

whether to update bu�er and minRank (Line 24-29). Otherwise, we add the children of ew into heapw for the

next regression (Line 30-31). Finally, the algorithm returns bu�er, which is the result of the WARR query.

5 OPTIMAL BOUNDING METHOD (OBM)
As Figure 5 shows, the key point of e�ciency in the bound-and-�lter framework is the bounding phase, because

the tightness of the bounds of Q determines the e�ectiveness of �ltering both P andW . �e score of the bounds

f (ew,Qup ) and f (ew,Q low ) determine the amount of data in P that can be �ltered. Moreover, as mentioned

in Section 4, the higher the lower hyperplane H (ew,Q .low ) is located, the higher the value of the lower rank

bound will be, and the more data fromW will be �ltered. According to Figure 5c, if Q could be bounded more

tightly, ew2 might be �ltered directly, without further computation. In conclusion, tightening the bounds of Q is

signi�cant to the performance.

In this section, we propose the optimal bounds of Q . We utilize the theory of linear programming to prove the

optimization. We propose an optimal bounding method (OBM) for WARR query based on these optimal bounds.

5.1 The Optimal Bounds for Q .

An arbitrary preference wa ∈ W can be represented by the linear combination of w (i )
t with coe�cient γi as

follows:

wa =

d∑
i=1

γiw
(i )
t , where γi ≥ 0 and

d∑
i=1

γi = 1 (6)
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Algorithm 2 Extended Filtering Method (EFM)

1: Initialize bu�er to store the �rst k w’s and the WARank(w,Q,α ).
2: Lrank ⇐ 0

3: minRank ⇐ the last rank in bu�er.
4: Bounding phase: get Q low

and Qup

5: heapw .enqueue (R-treew .root )
6: while heapw is not empty do
7: ew ⇐ heapw .dequeue
8: Cand ⇐ ∅
9: heapp .enqueue (R-treep .root )

10: while heapp is not empty do
11: ep ⇐ heapp .dequeue
12: if ep is located below the lower hyperplane then
13: // Lemma 1.

14: Lrank ⇐ Lrank + ep.size · |Q | · αmin
15: if Lrank ≥ minRank then
16: Continue

17: if ep in sandwiched space then
18: Cand ⇐ Cand ∪ ep
19: if ep covers the upper or lower hyperplane then
20: heapp .enqueue (ep.children)
21: if Lrank ≤ minRank then
22: // Corollary 3.

23: Compute further bounds and update Lrank and Cand .

24: if Lrank ≤ minRank then
25: if ew is a single w then
26: // Lemma 2.

27: Compute exact weighted rank WARank.

28: if WARank ≤ minRank then
29: Update bu�er andminRank .

30: else
31: heapw .enqueue (ew .children)
32: return bu�er

where

∑d
i=1

γi = 1 is guaranteed by

∑d
i=1

wa[i] = 1, as shown below.

1 =

d∑
j=1

wa[j] =
d∑
j=1

d∑
i=1

γiw
(i )
t [j] (7)

=

d∑
i=1

γi

d∑
j=1

w (i )
t [j]

=

d∑
i=1

γi × 1
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Fig. 6. The half-spaces of H (w
(i )
t ,q

(i )
l ), i = 1, 2, ...,d . The intersection point is the optimal lower bound of Q for an arbitrary

w ∈W .

Before formally stating and proving the d-dimensional case, we explain the lower bound optimum with 2-

dimensional data. (�e process for the upper bound can be illustrated in exactly the same way.) In Figure 6, there

are top preferencesWt = {w
(1)
t ,w

(2)
t } of all dimensions, and two corresponding perpendicular lines (hyperplanes)

of minimum values for f (w (i )
t ,q

(i )
l ), i = 1, 2, ...,d are determined.

�e construction of the hyperplanes indicates that p has a lower score than q (i )l on w (i )
t when p is located

in the half-space below H (w (i )
t ,q

(i )
l ). In Figure 6 where p is located in the overlap area (dark gray) of the two

half-spaces, p ·w i
t ≤ q (i )l ·w

(i )
t for i = 1, 2, ...,d . According to the Equation (6), the score of p based on an arbitrary

wa , f (wa ,p) = p ·wa , can be presented as follows:

p ·wa = p · (γ1w
(1)
t + (1 − γ1)w

(2)
t ) ≤ γ1q

(1)
l ·w

(1)
t + (1 − γ1)q

(2)
l ·w

(2)
t (8)

Let the intersection point of H (w (i )
t ,q

(i )
l ) be q̂. q̂ locates on both H (w (i )

t ,q
(i )
l ), f or i = 1, 2, ...,d , meaning that




q̂ ·w (1)
t = q (1)l ·w

(1)
t (a)

q̂ ·w (2)
t = q (2)l ·w

(2)
t (b)

Replacing the r.h.s of Equation (8) with the l.h.s of γ1 × (a) + (1 − γ1) × (b) gives

p ·wa ≤ γ1q̂ ·w
(1)
t + (1 − γ1)q̂ ·w

(2)
t = q̂ ·wa (9)

By the theory of linear programming, it is easy to know that p ·w takes the maximum value at q̂. In other words,

the score of point q̂ is optimal.

Based on this discussion, we can lay out the formal conclusion that shows that the optimal bounds of Q are

the intersection points.
3

Theorem 1. (�e optimal bounds of Q): Given Qu and Ql from Q andWt fromW , let Q low
opt be the intersection

point(s) of all hyperplanes {H (w (i )
t ,q

(i )
l ) |i = 1, 2, ...,d}, and Qup

opt be the intersection point(s) of all hyperplanes

{H (w (i )
t ,q

(i )
u ) |i = 1, 2, ...,d}, respectively. �en, Q low

opt and Q
up
opt are the optimal lower and upper bounds of Q ,

respectively.

3
If there is more than one point in the solution, any one of them can be the bound since they all have the same score.

ACM Transactions on Spatial Algorithms and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.



1:14 • Yuyang Dong et al.

5.2 Proof of the Optimal Bounds (Theorem 1).
As in the discussion for the 2-dimensional case, we only give the proof for the lower bound Q low

opt , since Q .up can

be proved in the same way.

Proof. (Q low
opt of �eorem 1):

Assume that the point q̂ can bound Q with an arbitrary wa ∈W . Because the larger value of f (wa , q̂) �lters

more data, we want to �nd the q̂ that maximizes wa · q̂. �e problem can be converted to a linear programming

problem with the standard form as follows:

Maximize: q̂ ·wa

Subject to: q̂ ·w (i )
t ≤ f (w (i )

t ,q
(i )
l )

q̂[i] ≥ 0, i = 1, 2, ...,d

By the theory of linear programming, the optimal lower bound is the intersection point(s) of all hyperplanes

{H (w (i )
t ,q

(i )
l ) |i = 1, 2, ...,d}. Generalizing the Equations (a) and (b) to d-dimensional case, the intersection point(s)

q̂ found by solving the following simultaneous equations (10), is the optimum solution of the above problem and

hence the lower bound. In other words, like Equation (9), the score of a p under all the hyperplanes based on an

arbitrary wa satis�es p ·wa ≤ q̂ ·wa .

A · q̂ = c (10)

where

A =



w (1)
t [1] · · · w (1)

t [d]

...
. . .

...

w (d )
t [1] · · · w (d )

t [d]



and c =



f (w (1)
t ,q

1

l )
...

f (w (d )
t ,q

d
l )



(11)

�

5.3 OBM Algorithm
Since computing Q low

opt and Q
up
opt is equivalent to solving the linear equations of Equation (11) and �nding q̂,

Gaussian elimination
4

is an easy and low-cost method for doing so. �e total complexity of Gaussian elimination

is approximate to O (d3), where d is the dimensionality of the data and indicates the number of linear equations.

�erefore, the complexity of the bounding phase in OBM is O (d · |Q | + d3). Notice that the complexity of �nding

Qup
and Q low

is O (d · |Q |) according to [6] and the cube of dimensionality is still a very small value. �e cost of

bounding Q is negligible to the whole bound-and-�lter algorithm, since both |Q | and d are far smaller than the

cardinality ofW and P .

We take advantage of this optimal bound and propose the OBM method (Optimal Bound Method). �e bounding

phase of OBM is described in Algorithm 3. �e �ltering phase of OBM is to replace the Q low
and Qup

in EFM

with the best bounds Q low
opt and Q

up
opt . Furthermore, Lemmas 1 and 2 and Corolllary 3 also hold to the optimal

bounds. Figure 7 shows the optimal bounds and �ltering space of OBM. In Figure 7a, it is obvious that Q low
opt and

Q
up
opt bound Q more tightly than the previous Q low

and Qup
. Figure 7b also shows that more data from P can be

�ltered than in EFM.

Table 2 summarizes the space and time complexities for NAIVE and the proposed SFM, EFM and OBM. NAIVE

has the highest time complexity O ( |P | · |W |) but no needs extra index storage. SFM uses R-tree to index P so it

4
h�ps://en.wikipedia.org/wiki/Gaussian elimination
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(a) The bounding phase. (b) The filtering phase (gray area).

Fig. 7. Bound-and-filter in OBM. (a) Finding the optimal bounds Qlow
opt and Qup

opt . (b) Comparing the filtering space of the

previous Qup (Qlow ) and optimal bounds.

Algorithm 3 Optimal Bounding

1: Wt has been found o�ine

2: Al and Au are matrixes for storing hyperplane equations.

3: for each w (i )
t ∈Wt do

4: qil ← arдmax ( f (w (i )
t ,q)), q ∈ Q

5: Ql ← Ql ∪ {q
i
l }

6: Al ← Al ∪ {w
(i )
t ∪ { f (w

(i )
t ,q

i
l )}}

7: qiu ← arдmin( f (w (i )
t ,q)), q ∈ Q

8: Qu ← Qu ∪ {q
i
u }

9: Au ← Au ∪ {w
(i )
t ∪ { f (w

(i )
t ,q

i
u )}}

10: Q low
opt ← GuassianElimination(Al )

11: Q
up
opt ← GuassianElimination(Au )

12: return { Q low
opt , Q

up
opt }

Table 2. The complexities of the methods.

Algorithm Index CPU cost I/O cost

NAIVE None O ( |P | · |W | · |Q |) |P | + |W |
SFM RtreeP O ( |W | · log |P |) log |P | + |W |
EFM RtreeP, RtreeW O (log |W | · log |P |) log |W | + log |P |
OBM RtreeP, RtreeW O (log |W | · log |P |) log |W | + log |P |

costs O ( |W | · log |P |). EFM and OBM are based on a bound-and-�lter framework with two R-trees and have the

complexities of O (log |W | · log |P |). �e di�erence is that the optimal bounding strategy makes OBM be�er than

EFM.
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6 EXPERIMENT
In this section, we present an extensive experimental evaluation of the NAIVE and proposed SFM, EFM, and

OBM algorithms for WARR query. All algorithms were implemented in C++ and the experiments were run on a

Mac with a 2.6 GHz Intel Core i7 CPU, 16 GB RAM, and 256G �ash storage.

6.1 Data sets and Metrics
Product dataset P : We used both synthetic and real-world data for P :

• Synthetic datasets: �e synthetic datasets are uniform (UN), clustered (CL), and anti-correlated (AC). �e

a�ribute value range of each dimension is [0,1). For the UN dataset, all a�ribute values are generated

independently and following a uniform distribution. �e AC dataset is generated by selecting a plane

perpendicular to the diagonal of the data space using a normal distribution; we generate a�ributes

value in this plane and follow a uniform distribution. For the CL dataset, �rst, the cluster centroids are

selected randomly and follow a uniform distribution. �en, each a�ribute is generated with the normal

distribution. We use the centroid values as the mean and 0.1 as variance. All of the above distributions

were used in related work of other reverse rank queries [6, 24, 25, 32].

• Real-world datasets: We also use two real data sets, NBA
5

and Amazon.
6

�e NBA dataset contains 20,960

tuples of box scores of basketball players in NBA seasons from 1949 to 2009. We extracted 5-tuples to

evaluate a player using points, rebounds, assists, blocks and steals statistics. �e NBA dataset was also

used in ARR query [6]. Another real-world dataset is the metadata of products from Amazon.com, a

well-known online retailer. �is metadata contains 1,689,188 user reviews on 208,321 tuples of products

in the categories of Movies and TV, in which product bundling is common. Each user provides at least

�ve reviews, and each product is reviewed by at least �ve users. All the values were normalized based

on the de�nition. We extracted price and sales rank from the metadata as 2-dimensional vectors that

represent a product. �e Amazon data are also used in other research, such as [15, 16].

User preference datasetW : For dataset W , we also have the synthetic datasets, UN and CL, which were

generated in the same manner as the P datasets. For the real data of Amazon, for a speci�c user w ∈ W , we

computed the average value on “Price” and “salesRank” of the products which the user bought, then assemble

these values as a 2-dimensional vector that represents this user’s preference.

�ery products Q : For the query products Q , we have two strategies to generate the queries. �e �rst is

to select a clustered subset from the product data P . In particular, we select a product in dataset P randomly,

then �nd its m nearest neighbor in P , wherem is the pre-de�ned cardinality of Q . We use this strategy as the

default Q since it is a common situation that the products are always similar in a product bundling in the real-life

applications (i.e., bundled books, clothes and games). On the other hand, we also test the performance on the Q
which randomly selected from P simply (uniform), this test is for the situation that products in a bundle are not

in a cluster (i.e., a mobile phone has a di�erent price compared to its charging cable and case).

Weights α : �e weights α corresponding to Q are generated randomly.

E�ciency metrics: We use three metrics to observe the e�ciency of all algorithms. a) �e query execution

time (CPU time) required by each algorithm; b) the I/O cost. I/O is estimated by checking accessed nodes in

R-treep and R-treew . We also observe c) the number of pairwise computations between P andW , which is a

statistic that clearly shows the performance of each algorithm. We present average values over 1000 queries in

all cases.
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Fig. 8. Comparison results of varying d (2-5) on UN data P ,W :UN, |P | = 20K, |W | = 200K, all with |Q | = 5, k = 10.

 0

 100

 200

 300

 400

 500

 600

2 3 4 5

C
P

U
 t

im
e

(s
)

d (2-5)

NAIVE
SFM
EFM
OBM

(a) CPU time.

 100000

 1x10
6

 1x10
7

 1x10
8

2 3 4 5

I/
O

s

d (2-5)

SFM
EFM
OBM

(b) I/Os cost.

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

2 3 4 5

C
o

m
p

u
ta

ti
o

n
s

d (2-5)

SFM
EFM
OBM

(c) Pairwise computations.

Fig. 9. Comparison results of varying d (2-5) on AC data P ,W : UN, |P | = 20K, |W | = 200K, all with |Q | = 5, k = 10.
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Fig. 10. Comparison results of varying d (2-5) on CL data P andW , |P | = 20K, |W | = 200K, all with |Q | = 5, k = 10.

6.2 Experimental Results
Synthetic data: Figure 8 presents the comparative performance of all algorithms on UN data of both P and

W for varying dimensionality d . �e cardinality of |P |=20K, |W |=200K, k=10, and |Q | = 5. According to the

execution time results shown in Figure 8a, our three proposed methods are signi�cantly faster than the NAIVE

algorithm. �e EFM and OBM methods, which use the bound-and-�lter framework with two R-tree, are superior

to SFM because they avoid checking each w ∈W . OBM is the most e�cient, 2–3 times faster than EFM with

5
NBA: h�p://www.databasebasketball.com.

6
Amazon: h�p://jmcauley.ucsd.edu/data/amazon/.
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Fig. 11. Comparison results of varying k (10-50) on NBA data, |P | = 20960, |W |: UN, |W | = 100K, all with |Q | = 5, d = 5.
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Fig. 12. Comparison results of varying k (10-50) on AMAZON data, |P | = 208,321, |W | = 1,689,188, all with |Q | = 5, d = 2.
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Fig. 13. Comparison results of varying k (10-50) on UN data P andW , |P | = 20K, |W | = 200K, all with |Q | = 5, d = 3.

the help of its optimal bounding strategy. We also found that the performance of SFM, EFM and OBM decrease

as dimensionality increases; in higher dimensional space, query Q intersects more MBRs of the R-tree and the

tree-based algorithms traverse deeper layers of the tree-structure for �ltering data. Figure 8b shows the I/O cost

of the proposed algorithms. EFM and OBM are be�er than SFM, since they only access a part ofW with the

R-treew while SFM needs to check every w . OBM has a lower I/O cost than EFM due to the optimal bounds on

Q in OBM, which allows it to �lter more data than EFM does, as was proved in �eorem 1. �e observation of

pairwise computations is shown in Figure 8c, which is an insight view of all algorithms. OBM makes the fewest

pairwise computations because it can �lter the most data among all the algorithms; this also proves that OBM

requires the least computation time when processing queries.
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Fig. 14. Comparison results of varying |Q | (5-25) on UN data P andW , |P | = 20K, |W | = 200K, all with k = 10, d = 3.
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Fig. 15. Scalability of varying P (100K-1M) on UN data P andW , |P | =100K, all with k = 10, d = 3, |Q | = 5.
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Fig. 16. Scalability of varyingW (100K-1M) on UN data P andW , |W | = 100K, all with k = 10, d = 3, |Q | = 5.

�e comparison results of AC and CL data in the same se�ing as the UN experiment are shown in Figures 9

and 10, respectively. Similarly to the results of the UN data, OBM is the most e�cient method; not only is it the

fastest algorithm, but it also has the lowest I/O cost and number of pairwise computations. We found that the

performance of EFM and OBM on CL data are be�er than on UN data, since the bound-and-�lter framework can

�lter more MBRs in R-treep and R-treew when P andW are clustered.

Real-world NBA data . Figure 11 shows the CPU time and I/O cost for all algorithms on NBA data, with

varying k . Clearly, OBM is more e�cient than others and has lower I/O cost and fewer pairwise computations.

�e NBA data were also used in ARR query [6] to answer the question ”Who loves a given basketball team more

than other people do?”. Every player on a basketball team has his responsibility; e.g., the Center and Power
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Fig. 17. Comparison results of di�erent distribution on Q , |P | = 20K, |W | = 200K, all with k = 10, d = 3. |Q | = 5

Forward defend and take rebounds, while the Point Guard and Score Guard need to pass and score. In addition

to verifying WARR query’s e�ciency, we also tested its practical applicability. We set a query team that was

good at defense, with (a) equal weights (ARR query) and (b) large weights on the Center and Power Forward

(WARR query). �e results from the WARR query all have greater preferences for the rebound and block a�ributes;

this means that WARR query returns a correct set of people, those who prefer defensive teams. For the above

observation, we conclude that WARR is more reasonable than the ARR query.

Real-world Amazon data. �e Amazon dataset contains e-commerce data. Comparison results of CPU time,

I/O cost and pairwise computing times are shown in Figure 12 with varying k on UN data fromW . We randomly

selected �ve movies or TV programs from the Amazon data as a product bundle query set. OBM maintains its

e�ciency in execution time and I/O cost, as can be seen in Figures 12a and 12b. �is is a very strong result that

demonstrates the e�ciency of OBM in practical marketing applications.

E�ect of varying k . Performance results when varying k on 3-dimensional UN data with |Q | = 5, |P |=20K,

|W |=200K, are shown in Figure 13. All algorithms are insensitive to k . First, k is far smaller than |W | and |P |.
Second, k is the number of results of w for WARR query, so the value of k does not a�ect performance very

much for any algorithms, even though the NAIVE and SFM algorithms check all w ∈W . EFM and OBM keep a

k-element ascending bu�er while processing, so they are only concerned with the last element withminRank
rather than all k candidates in the bu�er.
E�ect on varying |Q |. For the varying |Q | in Figure 14, because the number of products in a product bundle

is not generally large, we test |Q | from 5 to 15. EFM and OBM are insensitive to |Q | based on these results because

they bound Q in advance. However, the e�ciency of the NAIVE and SFM algorithms decrease as |Q | increases,

as they check every q.

Scalability with varying |P |. Figure 15 shows the performance of all algorithms when increasing the

cardinality of dataset P . We show the results of |P | = 100K , 500K , 1M , with |W | = 100K . �e scalability of all

algorithms are with respect to |P |, and OBM maintains the advantage over other algorithms. Because SFM, EFM,

and OBM all use R-trees to index P , the execution time and data accessed grow faster than linearly with P . �is is

clearly shown in Figures 15a, 15b and 15c.

Scalability with varying |W |. We also test the scalability of all algorithms for varying |W |. We show the

results of CPU time and I/O cost with the se�ing of |W | = 100K , 500K , 1M , with |P | = 100K , d = 3, |Q | = 5,

and k = 5. �ese results di�er with those of varying |P | in Figure 16; in this case only EFM and OBM maintain

their growth with increasing |W |. OBM is still the most e�cient algorithm. Figure 16c gives the insight view of

processing with the number of pairwise computations.

E�ect on the distribution of Q . Figure 17 shows the comparison results on clustered Q and uniform Q . We

can see that the performances in NAIVE and SFM are not changed with the clusteredQ since they process queries
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in Q independently. On the other hand, the clustered Q has a be�er performance in the bound-and-�lter based

methods EFM and OBM. �is is because the uniform Q may select a large distribution of products, then loose the

bound of Q and compute more data than a tighter bound in a cluster.

6.3 E�ectiveness
We test the e�ectiveness of WARR with AMAZON metadata and reviews data in Section 6.1, in comparison with

previous ARR [6]. �e details are as follows:

• Product (P ): Price, sales rank and rating are three a�ributes of a product. Price and sales rank are from

the metadata which is also used in our experiments of performance comparison. �e rating of a speci�c

product is computed as the average value of the reviews on this product.

• User preference (W ): �e user preference is also a three-dimensional vector which has values on (price,

sales rank, rating), corresponding to the a�ributes of a product. For a user, the value of price and sales

rank are computed as the average value of the products she has bought, and the value of the rating is the

average value of her reviews.

• �ery bundled products (Q): We �rst select a product p from P randomly, then �nd the “bought together”

product of the selected p, and use these two products as a product bundle.

We issued two types of queries of WARR and ARR with 100 randomly selected Q , and recorded 50 results for

each Q (i.e., k = 10 ∼ 50). �e precision is de�ned as the proportion of the users who have bought all products

of Q . We set α0 = (0.5, 0.5) as the ARR query which treats everything equally. On the other hand, we set

α1 = (0.75, 0.25) and α2 = (0.25, 0.75) which means that either would be the appreciative one. Figure 18 reports

the precision of ARR and WARR with α1 and α2. According to these results, WARR’s precision is be�er than ARR
in all situations. Of course, the precision depends on α . Nevertheless, people always evaluate products unequally

when they consider buying a bundled products, and WARR enables it to adjust the weights re�exing such request.

7 CONCLUSION
In this study, we proposed a general, weighted aggregate reverse rank (WARR) query. To WARR, aggregate reverse

rank (ARR) query is only a simple, special case in which all query points are treated with equal importance.

WARR query can be critical in various applications, such as �nding potential customers and analyzing marketing

via di�erent views for a set of products. We proposed three solutions for solving WARR query e�ciently. SFM is

a straightforward way to use tree-based methods for reducing the computation of product data. �e extended
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�ltering method (EFM) adapts the previous bound-and-�lter framework and is made able to solve WARR queries

by �ltering the pairwise computation from both product and preferences data. To optimize the bound, we

designed a new bounding strategy, then developed and implemented an optimal bounding method (OBM). We

theoretically proved the optimum of the bounds in OBM and compared the performance of the above three

methods with both synthetic and real data. �e results show that OBM is the most e�cient of these algorithms.

In future work, we �rst plan to make use of WARR query to implement an application tool for e-commerce

marketing analysis. We also plan to investigate how to set appropriate weights in WARR query.
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