
Continuous Search on Dynamic Spatial Keyword
Objects

Yuyang Dong∗, Hanxiong Chen∗ and Hiroyuki Kitagawa ∗†
∗Department of Computer Science, Information and systems, University of Tsukuba, Japan

†Center for Computational Sciences, University of Tsukuba, Japan
∗ touuyou@gmail.com, {∗chx, †kitagawa }@cs.tsukuba.ac.jp

Abstract—As the popularity of SNS and the number of GPS-
equipped mobile devices increases, a large number of web users
frequently change their location (spatial attribute) and interesting
keywords (keyword attribute) in real-time. An example of such
would be when a user watches the news, videos, and blogs while
moving. Many location-based web applications can benefit from
continuously searching for these dynamic spatial keyword objects.

In this paper, we define a novel query problem to continuously
search for dynamic spatial keyword objects. To the best of our
knowledge, this is the first work to consider dynamic spatial
keyword objects. We employ a novel grid-based index to manage
both queries and dynamic spatial keyword objects. With the
proposed index, we develop a buffer named partial cell list
to reduce the computation cost in the top-k reevaluation. The
experiments confirm the superiorities of our proposed methods.

I. INTRODUCTION

Smartphones and other mobile devices enable to receive in-

formation anywhere and enrich people’s lives. People are used

to watching the news, short video clips (e.g. Youtube, TikTok),

posting on SNS (e.g. Twitter, Weibo) with smartphones while

moving outside. Although different types of continuous spatial

keyword queries have been studied [1]–[4], the existing re-

search considers only static objects. In this research, we define

a novel searching problem that continuously searches for top-k
dynamic spatial keyword objects.

Figure 1 shows a scenario that explains how our research

works with the application of the E-coupon recommendation

system. Assume that a Hip-Hop cloth store, a Sushi restaurant

and an Audi car dealer are registered on our system. Our

system continuously searches the top-1 people for these three

shops and sends out coupons. At a certain time t0, Bob is

watching a hip-hop music video on his cellphone and becomes

the top-1 result of the Hip-hop store. Amy searches “Audi car”

with her phone, and Jack is watching a news about “Audi car”.

Our system adds Amy to the top-1 for the Audi dealer since

she is closer than Jack. Nobody is watching content about

“Sushi”, so the top-1 for the Sushi restaurant is empty. At

t1, Bob has changed his location and has started to watch an

eating show about Sushi. Then the keyword attribute of Bob

changes to “Sushi, Hip-Hop” 1. Our system still keeps Bob as

the top-1 of the Hip-Hop shop since there are no other better

1We suppose that the keyword attribute remains some keywords of the
previous status.

Fig. 1: E-coupon recommendation system.

options, and adds Bob to the top-1 list of the Sushi restaurant.

Amy has left away from the Audi dealer and has searched

“Steak near me” on her cellphone. Our system recognizes

Amy’s change and has reevaluated the top-1 for Audi dealer,

finding that Jack who has stayed and still watching the news

about the ”Audi car” becomes the top-1.

II. PRELIMINARIES

Definition 1: (Dynamic Spatial Keyword Object, o). A dy-

namic spatial keyword object o is defined as o = (o.ρ, o.ψ, t),
where o.ρ is the location attribute with coordinates, o.ψ is a

set of keywords, and t is the timestamp. Both o.ρ and o.ψ
change over time. o.ρ is updated with the up-to-date location.

o.ψ keeps the keywords of the up-to-date m status of object

o, where m is a user-determined window size.

Definition 2: (Spatial Keyword Query, q). Spatial keyword

query q also has a location attribute and a set of keywords,

q.ρ and q.ψ. In addition, q.k is the number of results (the k in

top-k). q.α is a user-defined smoothing parameter for spatial

keyword similarity. The attributes of a query are static.

Definition 3: (Spatial Keyword Similarity, SimST). Given

object o and query q, the spatial keyword similarity between

them is defined as:

SimST (o, q) = q.α·SimS(o.ρ, q.ρ)+(1−q.α)·SimT (o.ψ, q.ψ)
(1)

SimST is a combined value of spatial similarity SimS and

keyword similarity SimT . Firstly, the SimS is calculated by

the normalized Euclidean similarity. Note that the maxDist

1578

2019 IEEE 35th International Conference on Data Engineering (ICDE)

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00146

Fig. 2: The system and flow of the process: Grid-based index,

Top-k refiller and PCL buffer.

is the maximum distance in the data space.

SimS(o.ρ, q.ρ) = 1− Euclidean(o.ρ, q.ρ)

maxDist
(2)

Secondly, SimT is computed by the inner product between

the tf-idf weights of q.ψ and o.ψ.

SimT (o.ψ, q.ψ) =
∑

w∈o.ψ∩q.ψ
wt(o.w) · wt(q.w) (3)

where wt(w) denotes the tf-idf weight of keyword w, and

the weights of objects and queries are normalized to the unit

length.

Definition 4: (Continuous Search). Given an object set O
and a query set Q, for each query q ∈ Q, the continuous

search is to keep the up-to-date top-k objects o’s (o′s ∈ O)

ranked by descending order of SimST (o, q).
Figure 2 is an overview of how the proposed system solves

the continuous search on dynamic spatial keyword objects.

III. GRID-BASED INDEX

We use a regular grid-based index to maintain both objects

and queries (but they are not in the same indexing rule)

because the data in the grid can be accessed and updated

directly.

Objects are indexed in the grid w.r.t. their located cells. On

the other hand, to find the affected queries efficiently for a

new status of an object, the queries are indexed into the cell

according to their “influential circles”. We use q.ρ as the center

point and create an influential circle with a radius r calculated

by:

r =
1− kScore(q)

q.α
·maxDist (4)

kScore(q) is the smallest score in the top-k list of q. If an

object is located outside of this influential circle, it will not

be an element in the top-k of q. We indexed q into the cells

that overlap q’s influential circle. Figure 3 shows an example

where the circle of q1 overlaps with c1, c2, c3, and c4. Hence,

q1 is indexed into these four cells.

A cell can bound the range of the spatial attribute for the

objects. For the keyword attribute, maximum weights (maxwts)

and minimum weights (minwts) of the objects in a cell are also

indexed. The maxwts (minwts) are used to bound keyword

similarities between a query and a cell.

IV. PROPOSED METHODS

When a dynamic object o changes to o′, there are two kinds

of affected queries, OutQ and InQ. OutQ is a set of queries

corresponding to the previous o, each query in OutQ contains

o in its top-k. InQ is a set of queries corresponding to the

current o′, each query in InQ has a larger SimST (o′, q) than

kScore(q). Usually, OutQ is initialized when the system starts

and is recorded in the object table. InQ can be retrieved from

the indexed queries of the located cell of o′.
Updating the top-k’s for queries of InQ is low-cost since

only the top-k list is considered with o′. In other words, we

just need to insert o′ into the previous top-k. However, for

the queries of OutQ, o′ may get out of the top-k list. In this

case, we must reevaluate the top-k result from all objects. It

is natural that the cardinality of the objects is always much

larger than k. Consequently, compared to the process of InQ,

the main task is to reevaluate the OutQ’s top-k lists efficiently.

A. GCL method with the sorted cell list

The related research focuses on maintaining the candidate

objects in a result buffer to support the top-k reevaluation.

However, keeping objects in the buffer is inefficient in our

problem because the objects are dynamic, that incurring

frequent and expensive buffer maintenance. To address this

limitation, we propose a sorted cell list (CL) buffer that

maintains all cells of our grid-based index w.r.t. a similarity

priority.

We use q.CL to denote the sorted cell list w.r.t the query q.

All cells in the grid-based index are sorted by their maxscore
and stored in CL, where maxscore(c, q) is the upper value

of the spatial keyword similarity between any object in cell c
and a query q:

maxscore(c, q) = q.α · SimSUB(c, q.ρ)+

(1− q.α) · SimT (c.maxwts, q.ψ) (5)

Our idea is that we can employ an efficient branch-and-bound

method to find the top-k objects from the cells in CL. Since

CL can be implemented as a binary-tree-like structure 2.

B. GPCL method with the partial sorted cell list

GCL has a limitation that the buffer CL must maintain itself

every time even though an object does not affect any queries.

Motivated by the above limitations, we propose a partial sorted

cell list (PCL), which is a subset of CL. PCL always keeps

the candidate (k + 1)-th object to refill the top-k list.

Besides the maxscore in Equation (5), minscore of a

cell is also indexed in PCL. The minscore(c, q) denotes the

minimum spatial keyword score between any object in cell c
and a query q. minscore is formed with the minimum spatial

2Our implementation uses std::map in C++, it is a red-black tree structure.

1579

Fig. 3: Grid-based index, inner structure of a cell, and tables

Fig. 4: Four cases of a dynamic object and a query.

similarity (SimSLB) and the minimum keyword similarity

(SimTLB).

minscore(c, q) = α · SimSLB(c, q.ρ)+

(1− α) · SimTLB(c.minwts, q.ψ) (6)

SimTLB(c.minwts, q.ρ) =

MINw∈q.ψ∩c.minwtswt(q.w) · wt(c.w) (7)

1) Partial sorted cell list (PCL):
Definition 5: (Partial Cell List, PCL). Given a query q

and a grid-based index. For each cell c ∈ q.PCL, it holds

that c contains at least one object, and minscore(c, q) <
q.PCL.up and maxscore(c, q) > q.PCL.low. While pro-

cessing, q.PCL.up is updated as the value of up-to-

date kScore(q), q.PCL.low is initialized as the value of

maxMinS and will not change until q.PCL is recre-

ated, where maxMinS = MAX{minscore(cj , q)}, cj ∈
grid.cells and maxscore(cj , q) < kScore(q).

For each query, the corresponding PCL is initialized based

on Definition 5. When a top-k list needs to refill, a candidate

object can be searched from PCL and refilled to this top-k list.

The top-k reevaluation is much more efficient than using the

CL because only a top-1 search is conducted from fewer cells.

To guarantee that PCL always contains a candidate object to

refill top-k, we propose a sophisticated strategy to maintain

PCL.

2) PCL Maintenance: We divide the situations between

a dynamic object and a query into the following four cases.

Figure 4 shows images and summarizes the four cases: L2L
(large to large), S2L (small to large), L2S (large to small) and

S2S (small to small). Because a dynamic object may affect

the cells in PCL, we should maintain PCL carefully to ensure

it always contains the (k+1)-th object to refill. We propose a

sophisticated maintenance process.

L2L and S2L. The cases of L2L and S2L are discussed

together since they have a common PCL maintenance. In the

cases of L2L, both o and o′ are in the top-k. Thus, the order

of the objects outside top-k is not changed, and the (k+1)-th
object remains in PCL. Therefore, we just check the changing

cells o.cell and o′.cell with PCL. For the case of S2L, o′ is

added into top-k from the outside. The previous kth object

(denoted as ok) will become the (k+1)-th one, so we should

add the ok.cell into PCL to ensure the candidate object. o.cell
and o′.cell also require to check.

L2S. In the situation of L2S, we must search the top-

1 object ocand from PCL. Then we compare SimST (o′, q)
with SimST (ocand, q) and determine whether to refill

ocand or not. PCL is trimmed with a new score range

(kScore(q)′, q.PCL.low) where kScore(q)′ denotes the up-

dated k-th score.

S2S. S2S is divided into two sub-cases: S2S.a and S2S.b.

In S2S.a, both o and o′ are outside of q.PCL.low, so PCL

does not need to be maintained. In S2S.b, we need to check

o.cell and o′.cell with PCL. Similar to L2S, we will recreate

PCL if it becomes empty.

Algorithm 1 gives the proposed GPCL method.

V. EXPERIMENTS

All algorithms were implemented in C++. All indices,

buffers, and algorithms were run on in-memory of a Mac with

a 2.2GHz Intel Core i7 CPU and 32GB memory. We used

two real datasets and one synthetic dataset. YELP is an open

source dataset provided by YELP.com3. TWITTER is the

dataset with 4.2M geo-tag tweets from the United States4. In

TWITTER, there are 1.2M unique users each of which has at

least three geo-tag tweets. SYN is a synthetic data containing

12M spatial keyword tuples. Spatial attributes are generated

3https://www.yelp.com/dataset
4https://datorium.gesis.org/xmlui/handle/10.7802/1166

1580

Algorithm 1 GPCL

Input: o, o′, OutQ, InQ
1: // L2L
2: for each q ∈ OutQ ∩ InQ do
3: Update top-k(q) with o′.
4: q.PCL.check({o.cell ∪ o′.cell})
5: // S2L
6: for each q ∈ InQ−OutQ do
7: Update top-k(q) with o′.
8: q.PCL.check({o.cell ∪ o′.cell ∪ k.cell})
9: // L2S

10: for each q ∈ OutQ− InQ do
11: ocand = Retrieve Top-1 from q.PCL
12: if SimST (o′, q) > SimST (ocand, q) then
13: Update top-k(q) with o′.
14: else
15: Update top-k(q) with ocand.

16: q.PCL.check({o.cell ∪ o′.cell})
17: q.PCL.trim(kScore(q)′, q.PCL.low)
18: if q.PCL is empty then
19: q.PCL.recreate
20: // S2S
21: for each qi ∈ Q−OutQ ∪ InQ do
22: if SimST (o, q) < q.PCL.low and SimST (o′, q) <

q.PCL.low then
23: continue
24: else
25: q.PCL.check({o.cell ∪ o′.cell})
26: if q.PCL is empty then
27: q.PCL.recreate

by the BerlinMOD benchmark 5. Keyword attributes are used

from the keywords in TWITTER. We compare the following

methods:

• CIQ-kmax. The block-based inverted file structure in [4]

with the kmax buffer in [5].

• IGPT-kmax. The group pruning techniques in [3] with the

kmax buffer in [5].

• AQF-GCL. The proposed method with CL.

• AQF-GPCL. The proposed method with PCL.

Overall processing. Figure 5 shows the comparison results

for the overall processing. Both of our proposed methods,

AQF-GCL and AQF-GPCL, have better performances than the

others on both processing time and memory cost.

Effect on varying k. According to Figure 6a, AQF-GPCL is

the best method and is not influenced by k. From the memory

usage of indices in Figure 6b, a large k leads to a bigger

index for kmax-based methods. Our proposed methods are

unaffected by k since we index the identity of the cells.

VI. CONCLUSION

In this paper, we investigate a novel problem that searches

dynamic spatial keyword objects continuously and propose

5http://dna.fernuni-hagen.de/secondo/BerlinMOD/BerlinMOD.html

 50

 100

 150

 200

YELP TWITTER SYN

C
P

U
 ti

m
e(

m
s)

Datasets

CIQ-kmax
IGPT-kmax

AQF-GCL
AQF-GPCL

(a) Average processing time.

 1000

 2000

 3000

 4000

YELP TWITTER SYN

M
em

or
y

us
ag

e(
M

B
)

Datasets

CIQ-kmax
IGPT-kmax

AQF-GCL
AQF-GPCL

(b) Memory usage.

Fig. 5: Overall processing.

 50

 100

 150

 200

50 100 150 200

C
P

U
 ti

m
e(

m
s)

Varying k

AQF-GCL-yelp
AQF-GCL-twitter
AQF-GPCL-yelp
AQF-GPCL-twitter
IGPT-kmax-yelp
IGPT-kmax-twitter

(a) Average processing time.

 1000

 2000

 3000

 4000

50 100 150

200

M
em

or
y

us
ag

e(
M

B
)

Varying k

AQF-GCL-yelp
AQF-GCL-twitter
AQF-GPCL-yelp
AQF-GPCL-twitter
IGPT-kmax-yelp
IGPT-kmax-twitter

(b) Memory usage.

Fig. 6: Varying k.

a solution system. We employ a grid-based index to handle

both dynamic objects and queries. We propose a sophisticated

buffer called partial cell list (PCL) to efficiently refill the top-
kresults in our top-k refiller module. The experiments confirm

that our proposal has a good performance compared with the

baselines and related works.

ACKNOWLEDGEMENT

This research was partly supported by the program ”Re-

search and Development on Real World Big Data Integration

and Analysis” of RIKEN, Japan.

REFERENCES

[1] D. Wu, M. L. Yiu, and C. S. Jensen, “Moving spatial keyword queries:
Formulation, methods, and analysis,” ACM Trans. Database Syst., vol. 38,
no. 1, pp. 7:1–7:47, 2013. http://doi.acm.org/10.1145/2445583.2445590

[2] B. Zheng, K. Zheng, X. Xiao, H. Su, H. Yin, X. Zhou, and
G. Li, “Keyword-aware continuous knn query on road networks,”
in 32nd IEEE International Conference on Data Engineering, ICDE
2016, Helsinki, Finland, May 16-20, 2016, 2016, pp. 871–882.
https://doi.org/10.1109/ICDE.2016.7498297

[3] X. Wang, Y. Zhang, W. Zhang, X. Lin, and Z. Huang, “SKYPE: top-k
spatial-keyword publish/subscribe over sliding window,” PVLDB

, vol. 9,no. 7, pp. 588–599, 2016. http://www.vldb.org/pvldb/vol9/p588-wang.pdf
[4] L. Chen, G. Cong, X. Cao, and K. Tan, “Temporal spatial-keyword

top-k publish/subscribe,” in 31st IEEE International Conference on Data
Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015

, 2015,pp. 255–266. https://doi.org/10.1109/ICDE.2015.7113289
[5] K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen, “Efficient maintenance

of materialized top-k views,” in Proceedings of the 19th International
Conference on Data Engineering, ICDE, March 5-8, 2003, Bangalore,
India, 2003, pp. 189–200. https://doi.org/10.1109/ICDE.2003.1260792

[6] K. Mouratidis, S. Bakiras, and D. Papadias, “Continuous monitoring
of top-k queries over sliding windows,” in Proceedings of the
ACM SIGMOD International Conference on Management of Data
,Chicago, Illinois, USA, June 27-29, 2006, 2006, pp. 635–646.
http://doi.acm.org/10.1145/1142473.1142544

1581

