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ABSTRACT
In Rank-aware query processing, reverse rank queries have
already attracted significant interests. Reverse rank queries
can find matching customers for a given product based on
individual customers’ preference. The results are used in
numerous real-life applications, such as market analysis and
product placement. Efficient processing of reverse rank queries
is challenging because it needs to consider the combination
on the given data set of user preferences and the data set of
products.

Currently, there are two typical reverse rank queries: Re-
verse top-k and reverse k-ranks. Both prefer top-ranking
products and the most efficient algorithms for them have a
common methodology that indexes and prunes the data set
using R-trees. This kind of tree-based algorithms suffers the
problem that their performance in high-dimensional data de-
clines sharply while high-dimensional data are significant for
real-life applications. In this paper, we propose an efficient
scan algorithm, named Grid-index algorithm (GIR), for pro-
cessing reverse rank queries efficiently. GIR algorithm uses
an approximate values index to save computations in scan-
ning and only requires a little memory cost. Our theoretical
analysis guarantees the efficiency and the experimental re-
sults confirm that GIR has superior performance compared
to tree-based methods in high-dimensional applications.

CCS Concepts
•Theory of computation → Database query process-
ing and optimization (theory);
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Figure 1: Example for RTK and RKR queries. (a): the top-
2 cell phones appreciated by users. (b): the RT-2 of each
phone. (c): the rank list and the R1-R of each phone.
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1. INTRODUCTION
Top-k queries retrieve top-k products based on a given

user preference. As a user-view model, top-k queries are
widely used in many applications as shown in [3, 8]. As-
suming that there is a dataset of user preferences, reverse
rank queries (RRQ) have been proposed to retrieve the user
preference that causes a given product to match the query
condition. From the perspective of manufacturers, RRQ
are essential to identify customers who may be interested in
their products and to estimate the visibility of their fprod-
ucts based on different user preferences. Not limited to the
field of product (user) recommendations for e-commerce,
this concept of user-product can be extended to a wider
range of applications, such as business reviewing, dating and
job hunting.

Reverse top-k (RTK) [13, 14] and reverse k-ranks (RKR)
[22] are two typical RRQ queries. Figure 1 shows an exam-
ple of RTK and RKR queries. In this example, five different
cell phones are scored on how “smart” they are and the “rat-
ing”. Also, there is a preferences database for three users.
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Figure 2: Performance of tree-base algorithms (BBR, MPA)
and Simple scan on varying d (2-20).

These preferences are based on a series of weights for each
attribute. The score of a cell phone based on a user’s pref-
erence is found by a weighted sum function that computes
the inner product of the cell phone attributes vector and
the user preferences vector. Without loss of generality, we
assume that minimum values are preferable.

From the values in Figure 1, Tom’s score for cell phone p1

is 0.6 × 0.8 + 0.7 × 0.2 = 0.62. All cell phones’ scores are
calculated in the same way and ranked. If a cell phone is in
the top-k of a user’s rank list, then the user is in the result
of the RTK query for that specific cell phone. In Figure
1 (b), the RT-2 results for each cell phone are shown. We
can see that p2’s RT-2 results are Tom, Jerry and Spike,
meaning that all users consider p2 as an element of their
top-2 favorites. Notice that p1 and p4 have empty RT-2
result sets, which means that every user prefers at least two
other phones. [22] believed that it was not useful to return
an empty answer and proposed RKR query, which find the
top-k user preferences whose rank for the given product is
highest among all users. In Figure 1(c), p1 is ranked 3rd
by Tom, 5th by Jerry, and 3rd by Spike. In other words,
Tom (Spike) ranks p1 higher than other users, so he is in
the answer of the R1-R of p1.

1.1 Notations and Problem Definition
Each product p in the data set P is a d-dimensional vector,

where each dimension is a numerical non-negative scoring
attribute. p can be represented as a point p = (p[1], ..., p[d]),
where p[i] is an attribute value on ith dimension of p. The
data set of preferences, W , is defined in a similar way. w
is a user preference vector for products where w ∈ W , and
w[i] is the user defined weight value for the attribute on ith

dimension, where w[i] ≥ 0 and
∑d
i=1 w[i] = 1. The score is

defined as an inner product of w and p, which is expressed as
fw(p) =

∑d
i=1 w[i] · p[i]. Notations are summarized in Table

1. The definitions of top-k query and of the two reverse rank
queries [13,22] are re-used here.

Definition 1. (Top-k query): Given a positive integer
k, a point set P and a user-defined weighting vector w,
the resultant set TOPk(w) of the top-k query is a set of
points such that TOPk(w) ⊆ P , |TOPk(w)| = k and ∀pi, pj:
pi ∈ TOPk(w), pj ∈ P − TOPk(w). Therefore, it holds that
fw(pi) ≤ fw(pj).

Definition 2. (RTK query): Given a query point q and
k, as well as P and W (dataset of points and weighting vec-
tors respectively), a weighting vector wi ∈ W belongs to the
reverse top-k result set of q, if and only if ∃p ∈ TOPk(wi)
such that fwi(q) ≤ fwi(p).

Symbol Description

d Data dimensionality
P Data set of products (points)
W Data set of weighting vectors
q Query point

fw(p) The score of p based on w, fw(p) =
∑d
i=1(w[i] · q[i]).

p[i] Value of a point p ∈ P on i′th dimension

p(a) Approximate index vector of a point p

P (A) Approximate index vectors set ∀p ∈ P
n Number of partitions of value range
Grid Grid-index
L[fw(p)] Lower bound of score of p on w
U [fw(p)] Upper bound of score of p on w
q ≺w p q precedes p based on w

Table 1: Notations and symbols

Definition 3. (RKR query): Given a query point q and
k, as well as P and W , reverse k-ranks returns a set S, where
S ⊆ W and |S| = k, such that ∀wi ∈ S,∀wj ∈ (W − S),
rank(wi, q) ≤ rank(wj , q).

The rank(w, q) is defined as the number of points with a
smaller score than q for a given w.

1.2 Motivation and Challenges
To the best of our knowledge, the most efficient algorithm

for processing RTK is the Branch-and-Bound (BBR) algo-
rithm [17], and the most efficient algorithm for RKR is the
Marked-Pruning-Approach (MPA) algorithm [22]. Both al-
gorithms use a tree-based methodology, which uses an R-tree
to index the data set and prune unnecessary entries through
the use of MBRs (Minimum Bounding Rectangles). How-
ever, as pointed out by [2, 4, 19], the use of R-tree or any
other spatial indexes suffer from similar problems: When
processing high-dimensional data sets, the performance de-
clines to even worse than that of linear scan.

Figure 2 shows the comparison of performance between
tree-based algorithms (BBR, MPA) and the simple scan
(SIM, linear scan). According to the results, SIM outper-
forms these tree-based algorithms when processing RRQ in
high dimensions. The reason for that inefficiency is that
tree-based algorithms cannot divide data correctly in high
dimensions, causing most of the MBRs to intersect with each
other. Thus, even a small range query can overlap with a
major proportion of the MBRs.

Figure 3 shows a geometric view of processing RTK queries.
In this example, suppose that we treat p4 as the query point
q, then a line that crosses q is perpendicular to Tom’s weight
vector. The points in the gray area have a greater rank than
q. Tree-based methodology filters entries that are entirely
in the gray area and counts the number of points contained
in filtered entries to record the rank of q. However, because
q is within overlapping parts of MBRs, the tree-based algo-
rithm cannot filter any parts of MBRs containing the Tom
or Jerry’s preferences. As a result, it has to go through most
entries one by one and compute the scores. In these cases,
traversal of the tree-based spatial index is not an efficient
method.

For real-world applications, it is a natural requirement to
process RRQ for high dimensional data (more than 3). Both
the product’s attributes and user’s preferences are likely to
be high-dimensional. For example, cell phones consumers
care about many features, such as price, processor, storage,
size, battery life, camera, etc. As another example, DIAN-
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Figure 3: Tree-base methodology processing RTK and
search space (gray).

PING 1, a Chinese business-reviewing website, ranks restau-
rants by users’ reviews on overall rate, food flavor, cost,
service, environment, waiting time, etc. Therefore, process-
ing RRQ with a high-dimensional data set is a significant
problem, and due to the so-called “curse of dimensionality”,
simple scan offers a better performance than R-tree to solve
it.

Despite its performances advantages on high-dimensional
queries, there are challenges in processing RRQ with the
simple scan. RRQ are more complicated queries than sim-
ple similarity searches such as the top-k query or the nearest
neighbor search, and the time complexity of a naive simple
scan method is O(|P | × |W |). RRQ require that every com-
bination between P and W is checked before obtaining an
answer. And this incurs a large number of pairwise com-
putations. A comparison of 10K cell phones and 10K user
preferences would necessitate 10K × 10K = 100M compu-
tations. As a result, the enormous computational require-
ments cause the CPU cost to outweigh the I/O cost, which is
the opposite of what happen in normal situations. We hold
a preliminary experiment to confirm this by measuring the
elapsed time for reading different sizes of data, for process-
ing RRQ queries and for the pairwise computations in the
inner product. Table 2 shows that the time taken to read
different sizes of data file is almost negligible in the RRQ
processing. Rather, the major cost of processing RRQ is
the pairwise computations. We also found that the propor-
tion of pairwise computations in processing RRQ grew from
about 50% in 6-dimensional data to 90% in 100-dimensional
data. In conclusion, in contrast to the usual strategy of sav-
ing I/O cost in other simple similarity searches, saving CPU
computations is the key to process high-dimensional RRQ
efficiently.

For the above reasons, we develop an optimized version
of the simple scan, called the Grid-index algorithm (GIR)
which reduces the amount of multiplication of inner product
in the processing. First, We pre-compute some approximate
multiplication values and store them into a 2d array named
Grid-index. Then we pre-process the data P and W and
create the approximate vectors P (A) and W (A) which in-
dicate the index. In the GIR algorithm, we first scan the
approximate vectors P (A) and W (A), then use them with
the Grid-index to assemble upper and lower bounds, which
help to filter most data without multiplications. After the
filtering, we only need to refine few remaining data. In the

1http://www.dianping.com

hhhhhhhhhhhhhhElapsed time(ms)
Data size

1K 10K 100K

Reading data 5 26 146
Processing RRQ 240 9311 624318
−Pairwise computations 103 5321 352511

Table 2: Time cost for reading data and processing reverse
rank queries with 6-dimensional data.

worst case, it costs the I/O time for reading the P (A) and

W (A), which is much less than original data and insignificant
as concluded above.

1.3 Contributions
The contributions of this paper are as follows:

• We elucidate that the simple scan is an appropriate
way to process RRQ when processing high-dimensional
data. We also demonstrate that CPU cost is the ma-
jority cost and that it is much larger than I/O pro-
cessing. We are the first to conclude that a better
approach for processing RRQ is to optimize the scan
method.

• We propose a Grid-index, which uses pre-calculated
score bounds to reduce multiplications in the simple
scan. Based on Grid-index, we propose GIR algo-
rithm which processes RTK and RKR queries more
efficiently. Our method outperforms tree-based algo-
rithms in almost all cases and all data sets, except for
those in very low (less than 4) dimensional cases.

• We analyze the filter performance of tree-based al-
gorithms and establish the GIR performance model.
Theoretical analysis clarifies the limitation of the tree-
based methods. The performance model of proposed
GIR guarantees the efficiency of the Grid-index method
is achieved at a negligible memory cost.

The rest of this paper is organized as follows: Section
2 summarizes the related work. Section 3 states the Grid-
index concept and how to construct upper and lower bounds.
In Section 4, we present the formal description of the GIR
algorithm. Section 5 analyzes the performance of tree-based
algorithms and gives a performance model for the Grid-
index. Experimental results are shown in Section 6, and
Section 7 concludes the paper.

2. RELATED WORK
For top-k queries, one possible approach to the top-k prob-

lem is the Onion technique [3]. This algorithm precomputes
and stores convex hulls of data points in layers like an onion.
The evaluation of a linear top-k query is accomplished by
starting from the outermost layer and processing these lay-
ers inwardly. [8] proposed a system named PREFER that
uses materialized views of top-k result sets that are very
close to the scoring function in a query.

Reverse rank queries (RRQ) are the reverse version of
the top-k queries. A typical query of RRQ is the reverse
top-k query. [13,14] introduced the reverse top-k query and
presented two versions, namely monochromatic and bichro-
matic, and proposed a reverse top-k Threshold Algorithm
(RTA). [5] indexed a dataset with a critical k-polygon for
monochromatic reverse top-k queries in two dimensions. [17]



propose a tree-base, branch-and-bound (BBR) algorithm which
is the state-of-the-art approach for reverse top-k query. BBR
indexes both data sets P and W in two R-trees, and points
and weighting vectors are pruned through the branch-and-
bound methodology. For applications, reverse top-k query
was used in [16] to identified the most influential products,
and in [15] to monitor the popularity of locations based on
user mobility.

However, the reverse top-k query has a limitation that re-
turns an empty result for an unpopular product. [22] intro-
duced the reverse k-ranks query to ensure that any product
in the data set can find their potential customers. Then pro-
posed a tree-base algorithm named MPA (Marked Pruning
Approach), which uses a d-dimensional histogram to index
W and an R-tree to index P . Dong et al. [7] indicated
that both reverse top-k and reverse k-rank queries were de-
signed for only one product and cannot handle the product
bundling. So they defined an aggregate reverse rank query
that finds the top-k users for multiple query products.

Other works also considered a given data point and aimed
at finding the queries that have this data point in their re-
sult set, such as the reverse (k) nearest neighbor (RNN or
RKNN) [10, 20] that finds points that consider the query
point as the nearest neighbor. RKNN may looks similar to
RRQ, but they are actually very different. RKNN evaluates
relative Lp distance in one Euclid space with between two
certain points. On the other hand, RRQ focus on the abso-
lute ranking value over all products, and the ranking scores
are found through inner products of user preferences and
products, from two different data spaces.

For other reverse queries, the reverse furthest neighbor
(RFN) [21] and its extension RKFN (reverse k furthest neigh-
bor) [18] find points that consider a query point as their
furthest neighbor. The reverse skyline query uses the ad-
vantages of products to find potential customers based on
the dominance of competitors products [6,11]. However, re-
verse skyline query uses a desirable product data to describe
the preference of a user. But in the definition of RRQ, the
preference is described as a weighting vector.

For the space-partition tree-based structure, R*-tree [1],
a variation on R-tree, improves pruning performance by
reducing overlap in the tree construction. [9] used Hilbert
space-filling curves to impose a linear ordering on the data
rectangles in R-tree and improve the performance. [2] in-
vestigated and demonstrated the deficiencies of R-tree and
R*-tree when dealing with high-dimensional data. As an
improvement, a superior index structure named X-tree was
proposed. X-tree uses a split algorithm to minimize over-
lap and utilizes the concept of super-nodes. In our opinion,
X-tree can be seen as a middle approach between the R-
tree and simple scan methods, because it uses the spatial
tree structure to process the disjoint parts, and uses linear
scan with the overlapping parts. For high-dimensional data,
there are very few disjoint parts, causing there to be almost
no advantage to the construction and look-up features of the
X-tree.

It is well known that the overlapping nodes in high-dimensional
space, is a shortcoming of tree structure. R. Weber et al. [19]
proved that tree-based like [1, 2] is worse than linear scan
in high-dimensional data and proposed a VAFILE filtering
strategy. They divided the data space into buckets equally
and use these buckets’ upper and lower bounds to filter can-
didates. The goal of using VAFILE is to save I/O cost by

Figure 4: Equally dividing value range into 4 partitions,
allocating real values into approximate intervals and getting
the approximate vector p(a) and w(a).

Figure 5: 4×4 Grids for points and weighting vectors, map-
ping p(a) and w(a) onto Grids.

scanning the bit-compressed file of buckets. However, we
purpose to save the CPU computing in RRQ. [4] proposed
a technique by “indexing the function” that pre-computing
some key values of the Lp-distance function to avoid the
expensive computing in high-dimensional nearest neighbour
search.

3. GRID-INDEX
According the statement in Section 1.2, it stands to reason

that using a simple scan with high-dimensional data is the
most efficient approach. However, in this method, the multi-
plications of inner products take most of the processing time.
We were inspired to study a method that could enhance the
efficiency of the simple scan by avoiding multiplications for
the inner product. In this section, we introduce the concept
of Grid-index, which stores pre-calculated approximate mul-
tiplication values. The approximate values can form upper
and lower bounds of a score and can be used in a filtering
step for the simple scan approach.

3.1 Approximate Values in Grid-index
Concept of Grids. To confirm that the resultant score

of the weighted sum function (inner product) is fair, all val-
ues in p must be in the same range, so must all values in w.
We use this feature to allocate values into value ranges. As
Figure 4 shows, in this example we partition the value range
into 4 equal intervals. For the given p = (0.62, 0.15, 0.73),
the first attribute p[1] = 0.62 falls into the third partition
[0.5, 0.75]. The second, p[2] = 0.15, falls into the first parti-
tion [0, 0.25]. We will store the partition numbers as an ap-

proximate vector, denoted as p(a) and w(a), so p(a) = (2, 0, 2)

and w(a) = (0, 2, 1).
Since the inner product is the sum of pairwise multipli-



cations of p[i] and w[i], we combine the ranges of p and w
to form the grids. Figure 5 illustrates the 4 × 4 grids in
this example. We can map an arbitrary pair of (p[i], w[i])
onto a certain grid, and different (p[i], w[i]) pairs may share
the same grid location. The purpose of mapping the pairs
onto the grid is to use the grids’ corners to estimate the
score of p[i] ·w[i]. By taking advantage of values having the
same range, these grids can be re-used for mapping all pairs
(p[i], w[i]), i ∈ [1, d], p ∈ P and w ∈W .

Construction of Grid-index. Assume that we divide
the value range of p and w into n = 2b partitions, and the po-
sition information of all elements in a vector are represented
by a (n+1)-element vector αp for points and αw for weights.
In the example of Figure 4, αp = αw = (0, 0.25, 0.5, 0.75, 1).
The Grid-index, denoted as Grid, is a 2-dimensional array
and saves all multiplication results of all combinations be-
tween αp and αw:

Grid[i][j] = αp[i] · αw[j], i, j ∈ [0, n] (1)

Score Bounds and Precedence. According to the
above Grid partition, we pre-store all approximate vectors
for P and W , denoted as P (A) and W (A). The approximate
vector p(a) for a given p is calculated by p(a)[i] = bp[i] ·n/rc,
where r is the range of p[i]’s attribute value. w(a) is calcu-
lated from w in the same way. Clearly, for a pair (p[i], w[i])

in the ith dimension, Grid[p(a)[i]][w(a)[i]] is the lower bound

and Grid[p(a)[i] + 1][w(a)[i] + 1] is the upper bound. In

the example, p[1] = 0.62, w[1] = 0.12 and p(a)[1] = 2,

w(a)[1] = 0. Based on Equation (1), Grid[2][0] = 0.5 × 0,
Grid[2+1][0+1] = 0.75×0.25, meaning 0.5×0 ≤ p[1]·w[1] ≤
0.75× 0.25.

For the inner product fw(p) =
∑d
i=1 p[i] · w[i], based on

properties of the inner product and features of the Grid-
index, we know that:

L[fw(p)] ≤ fw(p) ≤ U [fw(p)] (2)

where L[fw(p)] and U [fw(p)], denoting the lower bound and
the upper bound of fw(p), are given by

L[fw(p)] =

d∑
i=1

Grid[p(a)[i]][w(a)[i]] (3)

U [fw(p)] =

d∑
i=1

Grid[p(a)[i] + 1][w(a)[i] + 1] (4)

The relationship between p and q can be classified into
three cases with the help of L[fw(p)] and U [fw(p)]:

• Case 1 (p ≺w q): If U [fw(p)] < fw(q), p precedes q, p
has a higher rank than q with w.

• Case 2 (q ≺w p): If L[fw(p)] > fw(q), q precedes p, p
does not affect the rank of q with w.

• Case 3 (p � q): Otherwise, p and q are incomparable,
i.e., L[fw(p)] ≤ fw(q) ≤ U [fw(p)]. The Grid-index
cannot define whether p or q ranks higher with w.

Filtering Strategy. We scan the approximate vectors
first, then use the Grid-index to obtain L[fw(p)] and U [fw(p)],
and filter points that satisfy either Case 1 or Case 2 above.
After scanning, if necessary, we carry out a refining phase,
and compute the real score for all points in Case 3. Notice

Figure 6: 6-bit string for compressing the p to p(a).

that throughout this process, we only calculated the sum
and retrieved L[fw(p)] and U [fw(p)] of Equations (3) and
(4). If a point p is in Case 1 or Case 2, we do not need
to compute the real score fw(p), thus saving computational
costs with multiplications to find the inner product.

3.2 Compress the Approximate Vectors
Storing all approximate vectors incurs extra storage costs

for data sets P and W . To compress this storage, each ap-
proximate vector can be presented by a bit-string describing
the interval which its elements fall. Figure 6 shows an ex-
ample where the approximate vector p(a) is saved as a 6-bit
string (100010), because 2 bits are needed to define 4 par-
titions for each of the 3 dimensions. Generally, if we divide
the value range into 2b partitions, then a (b × d)-bit string
is needed to store an approximate vector. According to the
analysis in Section 5.3, b = 6 is enough for a good filter-
ing performance. Usually, the original data is a 64-bit float
value, so the storage overhead by the compressed 6-bit data
is less than 1/10 of the original data 2. This kind of bit-
string compressing technique is also used in [19].

Reading approximate vectors with bit-string binary com-
pression only has half the time costs compared to regular
I/O operations. However, the superiority of I/O cost can be
ignored because the CPU cost is far greater than the I/O
cost in RRQ, as discussed in Section 1.2.

It may be argued that it would be the most efficient to
store all the scores of each p and w directly. In reality,
storing that amount of data is impossible due to the immense
cost. For example, assume that there are 10K products and
10K weight vectors. For Grid-index, 20K tuples are needed
to store the approximate vectors, but it would take 10K ×
10K = 100M tuples to store all the scores. The storage
overhead for storing all scores is thousands of times of the
approximate vectors in the proposed Grid-index method.

4. THE GIR ALGORITHM
Next, we use the Grid-index methodology to propose two

versions of Grid-indexing algorithm for RTK and RKR queries.
The two algorithms can be implemented easily by using the
GInTop-k function that efficiently obtains the rank of query
point q on a certain input w.

4.1 GInTop-k Function Based on Grid-index
Algorithm 1 describes the GInTop-k function based on

Grid-index. GInTop-k scans each approximate vector p
(a)
j ∈

P (A) − Domin. Domin is a global variable denoting a buffer

2When n = 2b, then the storage cost for the approximate
vectors are |P (A)| = b

64
|P | and |W (A)| = b

64
|W |, if P and

W ’s attributes are float values.



Algorithm 1 Grid-index checking q’s rank (GInTop-k)

Require: P (A), w
(a)
i , q, k,Grid, Domin

Ensure: -1: discard wi, rnk: include wi
1: Cand ← ∅
2: rnk ← Domin.size
3: for each p

(a)
j ∈ P (A)− Domin do

4: Calculate U [fw(pj)] by Eq. (4)
5: if U [fwi(pj)] ≤ fwi(q) then
6: rnk ++ // (pj ≺w q)
7: if pj ≺ q then
8: Domin ← Domin ∪ {pj}
9: if rnk ≥ k then

10: return −1
11: else
12: Calculate L[fw(pj)] by Eq. (3)
13: if L[fwi(pj)] ≤ fwi(q) ≤ U [fwi(pj)] then
14: Cand ← Cand ∪ {pj} // (pj � q)
15: Refine Cand : compare real score and updating rnk.
16: if rnk ≥ k then
17: return −1
18: else
19: return rnk

recording dominating points. If p is in Domin, then ev-
ery attribute of a point p is smaller than the correspond-
ing attribute in q (∀p[i], i ∈ (0, d) : p[i] < q[i]). Once q is
given, points in Domin always rank better than q. During
scanning, the number of points that rank better than q are
counted by rnk, which is initialized by the size of Domin
(line 2). The upper bound for the score is obtained using
Grid-index (line 4). If the upper bound is smaller than the
score of q (Case 1, line 5), then pj must have a better rank
than q for the weighting vector wi, hence rnk increases by
1 (line 6). Anytime pj is found dominating q, denoted by
pj ≺ q, pj will be appended to Domin (line 7-8). Whenever
rnk reaches k (line 9), there are at least k points that rank
better than q, thus the current wi is not a result of RTK of q
(−1 is returned). Otherwise, we get a lower bound from the
Grid-index (line 12). If q′s score is between the lower bound
and upper bound of pj ’s score (in Case 3, line 13), then pj is
added to Cand for further refinement(line 14). After scan-

ning P (A), if the algorithm did not return a decision, then a
refinement step is necessary to establish (line 15). We check
the original data of the points held in Cand and refine rnk
in the same way, terminating immediately when it reaches
k.

Computing fw(p) requires d multiplication operations and
d addition operations. However, to find U [fw(p)] and L[fw(p)],
it is only necessary to carry out d addition operations. There-
fore, our approach will save d times of multiplication if
U [fw(p)] ≤ fw(q) and the algorithm uses the branch at
lines 5-10. When U [fw(p)] ≥ fw(q), our approach requires
another d addition operations to find L[fw(p)], that is, an
equivalent amount of additions to replace the multiplication
operations in the evaluation of fw(p). In conclusion, using
this method will save computational cost if any point can
be filtered by the Grid-index. Section 5.3 proves that a low
cost Grid-index can be used to filter over 99% of points.

4.2 Grid-index Algorithm
Now we introduce how Grid-index is applied to RRQ. Al-

gorithm 2 and Algorithm 3 give the implementation of RTK
and RKR.

For each approximate vector of w
(a)
i ∈W (A), Algorithm 2

receives the result of filtering performed by GInTop-k (line
4). If the current wi ranks q in its top-k, then wi will be
added into the result set of RTOPk(q) (Line 5-6). If there
exists more than k dominating points of q, the algorithm
returns an empty set because q cannot be part of the top-k
for any weighting vector w (line 7-8).

Unlike RTK, a heap structure of size k, denoted by heap,
and a value minRank are introduced in Algorithm 3 for pro-

cessing the RKR. For each w
(a)
i ∈W (A), function GInTop-k

is called first, minRank is passed to GInTop-k and used for
filtering (line 5). If q ranks in the top-minRank (line 6),
we insert wi and rnk into the heap. The last rank of heap
is pushed out after it holds more than k elements (line 7).
Meanwhile, minRank is updated by the current last rank of
heap (line 8). This ensures a self-refined bound and keeps
the current k best results from W in heap. Finally, when
the algorithm terminates, heap is returned as the result set.

Algorithm 2 Grid-index Reverse top-k (GIRTop-k)

Input: P (A),W (A), q, k
Output: RTK result set RTOPk(q)
1: create Grid (Grid-index)
2: Domin ← {∅}
3: for each w

(a)
i ∈W (A) do

4: rnk ← GInTop-k(P (A), w
(a)
i , q, k,Grid, Domin)

5: if rnk 6= −1 then
6: RTOPk(q)← RTOPk(q) ∪ {wi}
7: if Domin.size ≥ k then
8: return {∅}
9: return RTOPk(q)

Algorithm 3 Grid-index Reverse k-ranks (GIRk-Rank)

Input: P (A),W (A), q, k
Output: heap = RKR result set
1: create Grid (Grid-index)
2: heap ← {∅}, Domin ← {∅}
3: minRank ←∞
4: for each w

(a)
i ∈W (A) do

5: rnk ← GInTop-k(P (A), w
(a)
i , q, minRank, Grid,

Domin)
6: if rnk 6= −1 then
7: heap.insert (wi, rnk)
8: minRank ← heap’s last rank.
9: return heap

5. PERFORMANCE ANALYSIS
In this section, we first analyze the weakness of tree-based

algorithms for RRQ. We then build a cost model for Grid-
index that finds the ideal number of grids (n × n), guaran-
teeing that specified filtering performance.

5.1 The Difficulty of Space-division in High
Dimensional Data

We first observe the influence of the number of divisions
through a space-division index. According to [22], MPA



1

1

xi
x′i

Rp
γ

0

p

xi+x
′
i

2

Wgroup.l

Wgroup.u y

(a) Trapezoidal prism

1

1

Rp

γ

0 x = 1− γ

x

y

Wgroup.l

Wgroup.u

(b) Tetrahedron

Figure 7: Two kinds of Filtering areas (gray) of R-tree.

uses a d-dimensional histogram to group all weighting vec-
tors W into buckets. Each dimension is partitioned into c
equal-width intervals, in total, there are cd buckets. As [22]
suggests, c = 5, If |W | = 100K with the 3-dimensional data,
W is grouped in 53 = 125 buckets. However, if d = 10, then
there are 510 ≈ 9 million buckets. It is not logical to filter
only 100K weight vectors by testing the upper and lower
bounds of such a huge number of buckets. In this case, scan-
ning one by one would be more efficient.

5.2 Analysis of R-tree Filtering Performance
We test some range queries (within 1% area of the data

space) over different d with an R-tree and observe the MBRs.
Table 3 shows the average value of accessed MBRs’ attributes.
Not surprisingly, when d > 6, all (100%) of MBRs overlap
in the query range, which means that all entries will be ac-
cessed during processing. As mentioned in Section 1.2, it
is a shortcoming of tree-based algorithms that the MBRs
will always overlap with each other when the data is high-
dimensional.

Besides the shortcoming from the tree-based index itself,
we also found that the filterable space of RRQ with tree-
based methodology reduces as the dimensionality increases.
This conclusion is supported by the following estimation.

Consider a tree-based algorithm that constructs an R-tree
for the products P and assume that Rp is a MBR of this R-
tree. In query processing, for each group of w’s (denoted
as Wgroup), points within Rp are checked. The upper and
lower bounds of fWgroup(Rp) are determined by the borders
of Wgroup and Rp. As Figure 7 shows, The gray area is the
safely filtered space. The shape of the gray area can be a
hyper-prism, a hyper-tetra or a combination of the two. It
means that in some of the dimensions (denoted as g) the
area will be a triangle, while a trapezoid in others. Assume
that the two kinds of shapes are separated clearly; then the
proportion of filtered values can be obtained by measuring
the volume:

V ol = V olTetraX · V olPrismX + V olTetraY · V olPrismY (5)

To give an analytical result, we assume that Rp is in the
centroid, so the two filtering areas are equal (V olTetraX =
V olTetraY ). Then the volume becomes

V ol = 2 · V olTetra · V olPrism (6)

Firstly, the volume of hyper-tetra is: 3

V olTetra =
1

g!
(

g∏
i=1

xi) =
1

g!
(1− γ)g (7)

then, the volume of the hyper-prism (the area in Figure 7
(a)) is:

Si =
1

2
(xi + x′i) ·H ≤ (

1− γ
2

) ≤ 1

2
(8)

where H = 1 is the length of the side. Imagine a 3 dimen-
sional trapezoidal prism in the figure, the volume is:

V olPrism3d =
1

3
(S1 + S2 +

√
S1S2) ·H ≤ 1

2
(9)

This result holds for higher dimensional trapezoidal prisms.
Consequently, the maximum volume gives the filtered area.

V olmax = 2 · 1

g!
(1− γ)g · 1

2
=

1

g!
(1− γ)g (10)

It is reasonable to assume that in half of the dimensions
the filtered area is hyper-tetra in shape. We will consider a
dataset of d = 10, g = 5, according to Equation (10), R-tree
based methods can only filter at most 1

5!
=0.8% of the data

space.
This clearly shows that the space filtered by R-trees in

RRQ becomes very small when encountering high-dimensional
data. For all points in the space which can not be filtered,
each w[i] · p[i] must be calculated and compared with that
of the query point.

5.3 The Performance Model of Grid-index
To build a model of our Grid-index, we make the following

assumption about the d-dimensional point data set: Values
in all dimensions are independent of each other, and the
sub-score in each dimension (w[i] · p[i]) follows a uniform
distribution. Both value ranges of P and W are divided
into n partitions for the Grid-index.

Let the probability of a score S falling into a certain in-
terval (a, b) be Prob(a < S < b), where (a, b) is created by
Grid-index. Data points with scores outside of (a, b) can be
filtered. We denote the filtering performance F by:

F (a, b) = 1− Prob(a < S < b). (11)

For example, if the probability of a point falling in an inter-
val is 5%, then we say that the filter performance is 95%.

Obviously, F (a, b) from Grid-index depends on the den-
sity of the grids (n × n). More partitions n lead to smaller
Prob(a < S < b) and better filtering performance. However,
larger n requires more memory, so it is important to find a
suitable n that balances these factors. For this purpose, we
first establish specific score properties and then define the
relationship between F and n.

For the case of one dimension, dividing the range into
equally n2 partitions, the probability of a point p’s score
falling into a certain interval is obviously:

Prob(
k

n2
< w · p < k + 1

n2
) =

1

n2
, k = 1, 2, ..., n2. (12)

3Recall that the area of a right triangle is s = x1x2
2

, and a
tetrahedron has volume v = x3s

3
= x1x2x3

3·2 . if for (d-1) dim,

the volume is Vd−1 ∼ cxd−1 then Vd =
∫
Vd−1dx ∼ cxd

d
.



Dimensionality 3 6 9 12 15 18 21 24

#MBR 1501 1480 1470 1470 1439 1479 1458 1456
diagonal length 4057.7 11744.3 19559.1 23807.9 31010.9 33717.1 36979.2 40515
Shape∗ 24.9 13.8 8.9 6.4 4.8 4.6 4.7 4.4
Overlaps in Query(1%) 30% 99.8% 100% 100% 100% 100% 100% 100%

Volume 2.89× e9 1.39× e21 3.65× e33 1.72× e45 1.08× e58 5.31× e69 2.16× e81 2.28× e93

∗ Shape is the ratio of the longest edge against the shortest one of an MBR.

Table 3: Observation of accessed MBRs of R-tree in query. 100K points indexed in R-tree, each MBR has 100 entries.
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Now, we want to estimate the probability of p’s score (
∑d
i=1 w[i]·

p[i]) falling in a score range obtained by Grid-index. For the
discrete d dimension case:

Prob(

d∑
i=1

(w[i] · p[i]) = s) (13)

This probability can be found by the so called ”Dice Prob-
lems”: Rolling d n2-sided dice and find the probability of
obtaining s score. In this problem, a n2-sided die corre-
sponds to the score range of a single dimension which is
equally partitioned in n2 parts by Grid-index. The number
of dice corresponds to the number of dimensions d, and the
scores by rolling d dice becomes the point’s score.

The number of ways obtaining score s is the coefficient of
xs in:

t(x) = (x1 + x2 + ...+ xn
2

)d (14)

By [12], the probability of obtaining s score on d n-sided
dice is

Prob(s, d, n) =
1

n2d

b(s−d)/n2c∑
k=0

(−1)k
(
d

k

)(
s− n2k − 1

d− 1

)
(15)

The filtering performance of Grid-index can be presented
by 1−Prob(s, d, n). However, it is difficult to analyse the re-
lationship between n and the filtering performance by Equa-
tion (15). On the other hand, we found that the distribution
of scores approaches a normal distribution, even in low di-
mensional cases, such as 4. Figure 8 shows the observation
of distribution of scores computed by Grid-index with n = 4
partitions, and the dimension d = 4. This encourages us to
approximate the feature by normal distribution.

For a point p, p[i] ·w[i] obeys a uniform distribution with
range [0, r), average value µ and standard deviation σ, where

µ =
1

2
r σ =

1

2
√

3
r (16)

The average score value of a point p is

p · w =
1

d

d∑
i=1

(p[i] · w[i]) (17)

By the central limit theorem, we have the following ap-
proximation when d is sufficiently large.

Lemma 1. (Score Distribution). The following random
variable

Z =

√
d

σ
(p · w − µ) (18)

follows the standard normal distribution (SND). In other
words, Z ∼ N(0, 1), where µ and σ are as in Equation (16).

Note that d · p · w is the score of point p. Representing
it by a random variable S, S follows a normal distribution
with mean µ′ = µd and standard deviation σ′ = σ

√
d. By

Equation (16),

µ′ =
1

2
rd σ′ =

√
d

2
√

3
r (19)

From Lemma 1 and (11), we may now estimate the filter-
ing performance.

Lemma 2. (Filtering performance). The filtering perfor-
mance of Grid-index, F , is given by

F (x, x+ ∆) = 1− Prob(x < S < x+ ∆)

= 1−
∫ x+∆

x

f(x)dx
(20)

where

f(x) =
1

σ′
√

2π
exp(− (x− µ′)2

2σ′2
) (21)

is the probability density function of N(µ′, σ′).

It is difficult to calculate the integral, but by rewriting Z
in Lemma 1, The above equation can be:

Z =
d · p · w − µd

σ
√
d

=
S − µ′

σ′
(22)

we can map S to Z ∼ N(0, 1) and need only to look up the
SND table.

We are now ready to estimate the filtering performance of
the Grid-index methodology. Recall that the score of a point
is the sum of d addends. The score’s range in each dimension
is [0, r), and it is equally divided into n2 partitions. Thus,
the value range computed by Grid-index of a d-dimensional
points corresponds to range ∆:

∆ =
r

n2
d (23)
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N(µ′, σ′) and the largest probability interval (gray). (b):
Φ(·) of the SND showing 1−

∫ α
−α · = 2Φ(α).

Our purpose is to find the number of partitions n which
guarantees a certain filtering performance F in Lemma 2. To
do this, it is sufficient to show the worst case. By Lemma
2, scores that fall within the interval illustrated by the gray
part in Figure 9(a) which is located on either side of µ, have
the largest probability and thus gives the worst F . Concen-
trating on this worst interval [µ′ − ∆

2
, µ′ + ∆

2
], by Equation

(22) and Equation (19), we find that S∆ = µ′ ± ∆
2

corre-
sponds to

Z∆ =
S∆ − µ′

σ′
=
µ′ ± ∆

2
− µ′

σ′
= ±
√

3d

n2
(24)

From Lemma 1, Z ∼ N(0, 1), the filtering performance in
the worst case can be given by

F (x, x+∆) > Fworst(x, x+∆) = 1−
∫ µ′+ ∆

2

µ′−∆
2

f(x)dx = 2Φ(

√
3d

n2
)

(25)
where Φ(·) is the area shown in Figure 9 (b).

The above discussion leads to the following result.

Theorem 1. Given ε < 1, the filtering performance of n
partitions is guaranteed to be above 1- ε in Grid-index such
that

n >

√
2
√

3d

δ
(26)

where δ is determined by looking up the SND table at (1−
ε)/2, that is,

Φ(
δ

2
) =

1− ε
2

(27)

Proof. By Equation (26), δ
2
>
√

3d
n2 . Since Φ is a mono-

tonically decreasing function (Figure 9), Φ(
√

3d
n2 ) > Φ( δ

2
).

Combining Equation (25) and Lemma 2, we have F > 2Φ( δ
2
) =

1− ε

Example. To ensure that Grid-index filters out over 99%

data, we set ε = 1% ( (1−ε)
2

= 0.495), thus the filtering per-
formance is guaranteed to be better than Fworst(δ) = 99%.
Looking up this value in the SND table, we have Φ(0.0125) =
0.495, hence, δ = 0.025. By Theorem 1, the sufficient num-
ber of partitions n is calculated by

√
3d

n2
< δ = 0.0125 −→ n >

√
2
√

3d

δ
=

√
80
√

3d (28)

HHH
HHW
P

Uniform Normal Exponential

Uniform 99.3% 98.3% 99.0%
Normal 98.8% 96.5% 98.7%

Exponential 99.2% 97.5% 98.9%

Table 4: Filtering performance of Grid-index with different
distributions. |P | = 100K, |W | = 100K, d = 6, n = 32

.

Parameter Values

Data dimensionality d 2 ∼ 50, 6
Distribution of data set P UN,CL,AC,RE
Data set cardinality |P | 50K,100K,1M,2M,5M
Distribution of data set W UN,CL,RE
Data set cardinality |W | 50K,100K,1M,2M,5M
Experiment times 1000

Number of clusters 3
√
|P |, 3

√
|W |

Variance σ2
W ,σ2

P 0.12

Number of grids, n2 42,82,162,322,642,1282

k (top-k and k-ranks) 100,200,300,400,500

Table 5: Experimental parameters and default values(in
bold) .

If d = 20 then n = 32 satisfies Equation (28) hence a 32 ×
32 Grid-index is enough for filtering over 99% data. The
necessary memory is less than 8 K (32× 32× 8) Bytes.

Theorem 1 is still true when w[i] · p[i] follows other dis-
tributions. The only difference is that a new µi and σi√

d

would have to be estimated, which would lead to a differ-
ent partition n. We observed the filtering performance on
some typical distributions, including the normal distribution
(σ = 10%) and exponential distribution (λ = 2). The filter-
ing power of the Grid-index is shown in Table 4. Different
σ between these distributions lead to slight differences in
filtering power. But the filtering power is always efficient.

6. EXPERIMENT
In this section, we present the experimental evaluation.

All algorithms are implemented in C++ and experiments
are run on a Mac with a 2.6 GHz Intel Core i5 processor,
8GB RAM, 500GB flash storage space. We pre-read the R-
tree, data sets P and W , approximated vectors PA and WA

and the Grid-index into memory. According to Table 2, the
I/O time is not relevant, so we focus on comparing our work
only in terms of CPU processing time.

6.1 Experimental Setup
Data sets. For data set P , both real data (RE) and syn-

thetic data sets are employed. Synthetic data sets are uni-
form (UN), anti-correlated (AC), and clustered (CL), with
an attribute value range of [0, 10K). The details on gener-
ating UN, AC, and CL data are in related research [13, 17].
To create weighting vectors W , there is additional UN and
CL data that is generated in the same way. There are
three real data sets, HOUSE, COLOR and DIANPING.
HOUSE (Household) consists of 201,760 6-d tuples, repre-
senting the distribution percentages of an American family’s
annual payment on gas, electricity, water, heating, insurance
and property tax. COLOR consists of 68,040 9-d tuples and
describes features of images in the HSV color space. HOUSE
and COLOR were also used in related works [13, 17]. DI-
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Figure 10: GIR vs BBR (a, b, c) for RTK, GIR vs MPA (d, e, f) for RKR. Performance on synthetic data with varying d
(2-8), |P | = |W | = 100K, top-k = 100, k-ranks = 100, n = 32.
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Figure 11: Performance on synthetic data with high dimen-
sional d (10− 50), |P | = |W | = 100K, top-k = 100, k-ranks
= 100, n = 32.

ANPING is a 6-d real world data set from a famous Chinese
online business-reviewing website. It includes 3,605,300 re-
views by 510,071 users on 209,132 restaurants about rate,
food flavor, cost, service, environment and waiting time.
We use the average scores of the reviews by the same user as
his/her preference (w), and the average scores of the reviews
on a restaurant as its attributes (p). RRQ can be anticipated
to help to find target users for these restaurants.

Algorithms. We implemented BBR, MPA and Simple
Scan algorithms (SIM). In BBR [17], both data sets P and
W are indexed by R-tree, points and weighting vectors are
pruned through the branch-and-bound methodology. MPA
[22] uses an R-tree to index P and a d-dimensional histogram
to group W in order to avoid checking every weighting vec-
tor. In SIM, for each w, all points in P are scanned and used
to compute the score. SIM also maintains a Domin buffer
to avoid unnecessary computing and terminates when cur-
rent rank does not satisfy the conditions for RTK or RKR.
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100 200 300 400 500
100

102

104

top-k

C
P

U
ti

m
e(

m
s)

BBR SIM GIR

(c) P,W : DIANPING, d = 6.
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Figure 12: GIR vs Tree-base with RE data on varying ”k”,
for RTK and RKR queries. n = 32.

In conclusion, the only difference between SIM and GIR is
that SIM computes a score for each p and w directly rather
than using Grid-index for filtering.

Parameters. Parameters are shown in Table 5 where the
default values are d = 6, |P |=100K, |W |=100K, k=100, the
number of Grids is 322, and both P and W are UN data.

Metrics. We did each experiment over 1000 times, and
present the average value. The query point q is randomly
selected from P . Besides the query execution time required
by each algorithm, we also observe the number of pairwise
computations and the percentage of accessed data.

6.2 Experimental Results
Synthesis data with varying d. Figure 10 shows the

performance of P (UN, AC, CL) and W (UN, CL) on syn-
thetic data sets, with |P |=100K and |W |=100K, k=100, n
= 32. Figures 10a, 10b and 10c show the CPU time and cost
comparisons for RTK in low dimensions (2 to 8). GIR out-
performs BBR in all distributions (UN,CL,AC) when data
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Figure 13: Scalability for all algorithms with varying |P |
(a,b) and |W | (c,d), top-k = 100, k-ranks = 100, n = 32, d
= 6.

has over 4 dimensions. SIM outperforms BBR when data
has more than 6 dimensions, with the exception of CL data,
since R-tree can group and prune more points when the data
set is clustered. GIR always exceeds SIM at least 2 times be-
cause GIR uses score bounds from Grid-index to skip most
data without doing multiplications. The results of RKR are
shown in Figures 10d, 10e, 10f, GIR outperforms simple scan
SIM at all times and outperforms the tree-based MPA with
4 to 8-dimensional data.

In high-dimensions (10-50), as shown in Figures 11a and
11c, the query time taken by tree-based method increases
rapidly for the two reasons we presented in Sections 1.2 and
5.2: overlapping MBRs and little space to prune. Figure
11b, 11d present the number of pairwise computations for
all algorithms, both BBR and MPA use more computations
than the simple scan. Notice that the computation numbers
for GIR and SIM are equal and are both titled “SCAN” in
the figures. On the other hand, GIR is the most stable
method and only grows slightly. This confirms that GIR is
only slightly affected by increasing dimensionality.

Real data with varying “k”. For the performance of
these algorithms on real data sets (RE) with varying k. No-
tice that k has a different meaning, it is a query condition
in RTK and a result size in RKR. Figures 12a, 12b show the
results from data set HOUSE and COLOR, and data set W
is generated as UN data. We process COLOR with RTK and
HOUSE with RKR. Clearly, GIR is consistently superior to
tree-based algorithms (BBR and MPA) and SIM, though all
are stable for various k values. For the DIANPING dataset,
P and W contain the average scores vectors from the reviews
of users and restaurants. We peform RTK and RKR queries
on DIANPING data and the Figures 12c and 12d show the
comparison results. As we expected, the GIR algorithm is
the most efficient for this real-world application data set.

Scalability with varying |P | and |W |. According Fig-
ure 13, as the cardinality of data set increases P (Figures
13a and 13b) or W (Figures 13c and 13d), GIR becomes
significantly superior to tree-based algorithms (BBR, MPA)
and SIM. n = 32 is sufficient to filter more than 99% of
points for a 6-d dataset based our Theorem 1. Thus, the
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Figure 14: GIR vs Tree-base with varying k, for RTK and
RTK queries. P , W : UN, n = 32, d = 6.
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Figure 15: (a) Visited data for all algorithms on varying d,
(b) Filtering data (%) of Grid-index on varying n. |P | =
100K, |W | = 100K. P , W : UN.

CPU cost increased only slightly as the scale increased.
Effect on “k”. Figures 12, 14 also show the performance

changes when k increases from 100 to 500. All algorithms
are insensitive to k because k � |P | and k � |W |.

Accessed data points. Figure 15a shows the percentage
of visited data in the leaf nodes of the R-tree and original
data points on UN data. As predicted by our analysis, R-
tree degenerated to a simple scan through all leaf nodes with
high-dimensional data. However, GIR accesses a relatively
small amount of data after filtering with Grid-index.

Effect on value range partitions n. Figure 15b shows
the percent of 20-d data which can be filtered with Grid-
index with various Grid numbers (n×n). We created Grid-
index with different n from 4 to 128 and observed the filter-
ing of data points. The results confirm the analytical result
guaranteed by Theorem 1. n = 32 is enough to guarantee a
high Grid-index efficiency.

7. CONCLUSION
Reverse rank queries are useful in many applications. In

marketing analysis, they can be used to help manufactur-
ers recognize their consumer base by matching their prod-
uct features with user preferences. The state-of-the-art ap-
proaches for both reverse top-k (BBR) and reverse k-ranks
(MPA) are tree-based algorithms, and are not designed to
deal with high-dimensional data. In this paper, we pro-
posed the Grid-index and the GIR algorithm to overcome
the cost of high-dimensional computing when processing re-
verse rank queries. Theoretical analysis and experimental
results confirmed the efficiency of the proposed algorithm
when compared to the tree-based algorithms especially in
high-dimensional cases.

In future work, there are two extensions for GIR algo-
rithm. The first is to find a heuristic method to adapt GIR to
different data distributions by using non-equal-width Grid-
index. This is easy to implement by merging and splitting



some grids of the equal-width Grid-index based on the dis-
tributions of the given P and W . The challenging point is
the model of filtering performance with varied distributions
in different dimensions. The second extension is to do opti-
mization when the user preferences data w ∈ W has many
zero entry, i.e., when W is sparse. Since in practice, a user
is normally interested in a few attributes of the products.
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