
Aggregate Reverse Rank Queries

Yuyang Dong(B), Hanxiong Chen, Kazutaka Furuse, and Hiroyuki Kitagawa

Department of Computer Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
tou@dblab.is.tsukuba.ac.jp, {chx,furuse,kitagawa}@cs.tsukuba.ac.jp

Abstract. Recently, reverse rank queries have attracted significant
research interest. They have real-life applicability, such as in marketing
analysis and product placement. Reverse k-ranks queries return users
(preferences) who favor a given product more than other people. This
helps manufacturers find potential buyers even for an unpopular prod-
uct. Similar to the cable television industry, which often bundles chan-
nels, manufacturers are also willing to offer several products for sale as
one combined product for marketing purposes.

Unfortunately, current reverse rank queries, including Reverse k-ranks
queries, only consider one product. To address this limitation, we pro-
pose the aggregate reverse rank queries to find matching user preferences
for a set of products. To resolve this query more efficiently, we pro-
pose the concept of pre-processing the preference set and determining
its upper and lower bounds. Combining these bounds with the query
set, we proposed and implemented the tree pruning method (TPM) and
double-tree method (DTM). The theoretical analysis and experimental
results demonstrated the efficacy of the proposed methods.

Keywords: Similarity search · Aggregate reverse rank queries ·
Tree-based method

1 Introduction

Top-k and reverse k-rank queries are two different kinds of view-models. The
top-k query is a user view-model that helps consumers by obtaining the best k
products that match a user’s preference. On the other hand, the reverse k-rank
query [18] supports manufacturers by discovering potential consumers through
retrieving the most appropriate user preferences. Therefore, it is a manufacturer
view-model and can be used as a tool for identifying customers and estimating
product marketing.

Figure 1 shows an example of a reverse 1-rank query. Five different cell phones
(p1–p5) are scored on “smart” and “ratings” in a table (Fig. 1(a)). The prefer-
ences of two users Tom and Jerry are in another table (Fig. 1(b)) and consist of
the weights for all attributes. The score of a cell phone based on user preference
is determined from the inner product of the cell phone attributes vector and user
preference vector. Without loss of generality, we assumed that minimum values
are preferable. The results of the reverse 1-rank query are given in the last cells
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Fig. 1. The example of reverse 1-rank queries.

of Fig. 1(b). For example, Tom believes that p1 is the third-best phone, while
Jerry thinks that p1 is the fifth-best. To manufacturers, Tom is more likely to
buy p1 than Jerry; hence, the reverse 1-rank query returns Tom as the result.

Motivation. Manufacturers use “product bundling” for marketing purposes.
Product bundling is offering several products for sale as one combined product.
It is a common feature in many imperfectly competitive product markets. For
example, Microsoft Co., Ltd. includes a word processor, spreadsheet, presenta-
tion program, and other useful software into a single Office Suite. The cable
television industry often bundles various channels into a single tier to expand
the channel market. Manufacturers of video games are also willing to group a
popular game with other games of the same theme in the hope of obtaining more
benefits by selling them together.

Because product bundling is an important business approach, helping man-
ufacturers target buyers for their bundled products is important. Unfortunately,
the reverse k-rank query and other kinds of reverse ranking queries are all
designed for just one product. To address this limitation, we propose a new
query definition that finds k customers with the smallest aggregate rank values,
where the rank of a product set is defined as the sum of each product’s rank.
We call this approach aggregate reverse rank queries (AR-k queries).

Fig. 2. The example of aggregate reverse 1-rank queries.
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Figure 2 shows an example of an AR-1 query. There are three groups of
bundled products: {p1, p2}, {p2, p3}, and {p4, p5}. The aggregate rank of {p1, p2}
is 5 according to Tom’s preferences and 6 according to Jerry’s. Thus, the AR-1
query returns Tom as the result because Tom prefers this bundle the most.

Contribution. This paper makes the following contributions:

– To the best of our knowledge, we are the first to address the “one product”
limitation of reverse k-rank queries. We propose a new AR-k query that returns
the k user preferences that best match a set of products.

– We propose the concept of pre-processing preferences to determine possible
upper and lower bounds. This process can be done before the AR-k query is
issued to enhance its efficiency and is implemented with the proposed tree-
pruning method (TPM) and double-tree method (DTM).

– Along with the theoretical analysis, we also performed experiments on both
real and synthetic data. The experimental results validated the efficiency of
the proposed methods.

The rest of this paper is organized as follows: Sect. 2 summarizes related work.
Section 3 states the definitions. In Sect. 4, we present the method of bounding
the query set. Sections 5 and 6 propose two solutions (TPM and DTM) of AR-k.
Experimental results are shown in Sect. 7 and Sect. 8 concludes the paper.

2 Related Work

Ranking is an important property for evaluating the position of a product. Many
variants of rank-aware queries have been widely researched.

Ranking Query (Top-k Query). The most basic approach is the top-k query.
When given a user preference, the top-k query returns k products with minimal
ranking scores found by a score function. One possible approach to the top-
k problem is the onion technique [1]. This algorithm pre-computes and stores
convex hulls of data points in layers like an onion. [4] is an important investiga-
tion that describes and classifies top-k query processing techniques in relational
databases.

Reverse Rank Query (RRQ). Reverse top-k queries [10,12] have been pro-
posed to evaluate the impact of a potential product on the market based on the
preferences of users who treat it as a top-k product. For an efficient reverse top-k
process, Vlachou et al. [13] proposed a branch-and-bound algorithm (BBR) using
boundary-based registration and a tree base. Vlachou et al. [11,14] have reported
various applications of reverse top-k queries. However, in order to answer the
reverse query for some less-popular objects, [18] proposed the reverse k-rank
query to find the top-k user preferences with the highest rank for a given object
among all users.

Other Reverse Queries. Other related research on reverse queries is listed
below. Given a data point, queries are performed to find result sets contain-
ing this data point. In contrast to the nearest-neighbor search, Korn and
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Muthukrishnan [5] proposed the reverse nearest-neighbour (RNN) query. Besides
the nearest neighbor, Yao et al. [17] proposed the reverse furthest neighbor
(RFN) query to find points where the query point is deemed as the furthest
neighbor. For reverse k nearest neighbor (RKNN), Yang et al. [15] analyzed and
compared notable algorithms from [2,7–9,16]. RKNN differs from RRQ because
it evaluates the relative Lp distance between two points in one Euclidean space.
However, RRQ focuses on the absolute ranking among all objects, and scores
are found via the inner product function. In addition, RKNN treat the user
preference and product as the same kind of point in the same space, while RRQ
has two data sets of different data spaces. The reverse skyline query uses the
advantages of products to find potential customers based on the dominance of
competitors’ products [3,6]. The preference of each user is described as a data
point representing the desirable product. But in RRQ, the preference is described
as a weight vector.

3 Problem Statement

The assumption of the product database, preference database and the score
function between them are same with the related research [10,13,18]. Let there
be a product data set P and preference data setW . Each p ∈ P is a d-dimensional
vector that contains d non-negative scoring attributes. p is represented as a point
p = (p[1], p[2], ..., p[d]), where p[i] is the attribute value of p in the ith dimension.
The preference w ∈ W is also a d-dimensional weighting vector, and w[i] is a non-
negative weight that evaluates p[i], where

∑d
i=1 w[i] = 1. The score is defined as

the inner product of p and w, which is expressed by f(w, p) =
∑d

i=1 w[i] · p[i].
Given a query q, which is in the same space as, but not necessarily an element
of P , the reverse k-rank query [18] is defined as follows.

Definition 1 (rank(w, q)). Given a point set P , weighting vector w, and query
q, the rank of q by w is rank(w, q) = |S|, where S ⊆ P and ∀pi ∈ S, f(w, pi) <
f(w, q) ∧ ∀pj ∈ (P − S), f(w, pj) ≥ f(w, q).

Definition 2 (reverse k-ranks query). Given a point set P , weighting vector set
W , positive integer k, and query q, the reverse k-rank query returns the set S,
S ⊆ W , |S| = k, such that ∀wi ∈ S,∀wj ∈ (W − S), rank(wi, q) ≤ rank(wj , q)
holds.

To deal with a query having more than one query point, we propose the AR-k
query, which is formally defined as follows.

Definition 3 (aggregate reverse rank query, AR-k). Given a point set P , weight-
ing vector set W , positive integer k, and query point set Q, the AR-k query
returns the set S, S ⊆ W , |S| = k, such that ∀wi ∈ S,∀wj ∈ (W − S),
ARank(wi, Q) ≤ ARank(wj , Q) holds.

Three aggregate evaluation functions were considered for ARank:
• Sum: ARank(w,Q) =

∑
qi∈Q rank(w, qi).
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• Maximum: ARank(w,Q) = Maxqi∈Q{rank(w, qi)}.
• Minimum: ARank(w,Q) = Minqi∈Q{rank(w, qi)}.

There are many other possible definitions for ARank(w,Q). We considered the
above because they are the most likely to be used in real applications. Suppose
that there is a set of products offered by a manufacturer and we want to help
them find the most potential buyers. Then, the above three evaluating functions
correspond to the following requests:
Sum: find buyers who more strongly believe that this product set is better than
other people. Maximum/Minimum: find buyers who more strongly believe
that the best/worst product in this set is better than other people.

The rest of this paper only focuses on Sum AR-k because Maximum and
Minimum can be solved simply by using the technique of the existing reverse
k-rank query. From a technical point of view, for maximum score, let q′ be
the query of Q such that f(w, q′) =maxqi∈Q{f(w, qi)} with respect to w, then
the rank of q′, rank(w, q′), is also equal to Maxqi∈Q{rank(w, qi)}. Thus, we
can process Maximum AR-k simply by applying the reverse k-rank query to q′.
Minimum can be solved in a similar manner.

4 Bounding the Query Set in Advance

A naive solution to an AR-k query is to sum up the ranks for q ∈ Q one by
one against each w ∈ W and p ∈ P . This is inefficient, especially when Q is
large. Our idea is to bound the query set Q with respect to W . In this section,
we introduce a sophisticated method of bounding Q with two points Q.up and
Q.low from a subset of W . Denoted by Wt = {w(i)

t }d1, this subset is the set of
top-weighting vectors for all dimensions, as defined in the following,

Definition 4 (top-weighting vector). Given a set of weighting vector W , let ei
be the direction vector for dimension i such that ei[i] = 1 and ei[j] = 0, i ̸= j
and let cos(a, b) = a · b/(|a||b|) be the cosine similarity between vectors a and b.
The top-weighting vector for dimension i is defined by w(i)

t where w(i)
t ∈ W and

∀w ∈ W, cos(w(i)
t , ei) ≥ cos(w, ei).

Wt can be found before the query set Q is issued, so it can be considered as
cost less in terms of query processing. Because Wt contains the border of the
weighting vector in all dimensions, we can use it to find the upper border and
lower border points set of Q.

Definition 5 (upper and lower border query sets Qu and Ql). Given a
d-dimensional query points set Q,

Qu = {qi|qi ∈ Q ∧ ∀qj ∈ Q, ∃w(i)
t ∈ Wt, f(w

(i)
t , qi) ≥ f(w(i)

t , qj)} and
Ql = {qi|qi ∈ Q ∧ ∀qj ∈ Q, ∃w(i)

t ∈ Wt, f(w
(i)
t , qi) ≤ f(w(i)

t , qj)}.
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By the definition, for each w(i)
t there is a corresponding qi ∈ Qu (Ql) such

that qi’s score with respect to w(i)
t is the largest (smallest) among Q. Different

w(i)
t may correspond to a same qi and vice versa. Generally, it is easy to find the

minimum bounding rectangle (MBR) of a point set X, and let its upper-right
and lower-left corners be MBR(X).up and MBR(X).low, respectively. We show
below that Q.up = MBR(Qu).up and Q.low = MBR(Ql).low bound the query
set Q for the AR-k query.

Figure 3 shows the geometric view for the example of Q.low and Q.up where
Q = {q1, q2, q3}. w(1)

t = w5 and w(2)
t = w1 are the top-weighting vectors in

dimensions 1 and 2, respectively. Each w(i)
t is also a normal vector of the hyper-

planes H(w(i)
t ). For Q.up, in 2-dimensional space, the hyper-planes H(w(1)

t ) are
the dashed lines l1 which are perpendicular to w(1)

t . By sweeping l1 parallelly
from far infinity toward the original point (0, 0), q1 is the first point that is
touched. Hence, q1’s score with respect to w is equal to maxq∈Qf(w

(1)
t , q), and

q1 is included in Qu. In the same manner, l2 touches q3 first, so q3 ∈ Qu.
Q.up = MBR(Qu).up upper-bounds the scores for Qu. Similarly, sweeping the
perpendicular dashed lines l3 and l4 from (0, 0) toward infinity both touch q2,
hence Ql = {q2} and Q.low = q2.

Fig. 3. A 2-dimensional example. w(1)
t = w5, w

(2)
t = w1 and Qu = {q1, q3}, Ql = {q2},

Q.low = MBR(Ql).low = q2, Q.up = MBR(Qu).up

Theorem 1 (Correctness of Q.up and Q.low). Given top-weighting vectors set
Wt, the d-dimensional query point set Q, Q.up and Q.low. For w ∈ W and
q ∈ Q, f(w,Q.low) ≤ f(w, q) ≤ f(w,Q.up) always holds.

Proof. By contradiction. For Q.up, assume that ∃q ∈ Q, q /∈ Qu holds so that
f(w, q) ≥ f(w,Q.up). Therefore, ∃q[i] > Q.up[i], i ∈ [1, d], so there must exist a
w(j)

t ∈ Wt, j ∈ [1, d] that makes f(w(j)
t , q) the maximum value, and q should in

Qu. This leads to the contradiction.1 A similar contradiction occurs with Q.low.
1 The geometric view is that there exists a hyper-plane H(w(j)

t ) that first touches q
rather than others.
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We can use the rank of Q.low to infer the bounds of the aggregate rank of Q.

Lemma 1 (Aggregate rank bounds of Q for w): Given a set of query points
Q and a weighting vector w, the lower bound of ARank(w,Q) is |Q| ×
rank(w,Q.low), and the upper bound of ARank(w,Q) is |Q| × rank(w,Q.up).

Proof. ∀qi ∈ Q, ∀w[i] ≥ 0, it holds that f(w, qi) ≥ f(w,Q.low)
hence rank(w, qi) ≥ rank(w,Q.low). By definition, ARank(w,Q) =∑

qi∈Q rank(w, qi) ≥ |Q| × rank(w,Q.low). Similarly, |Q| × rank(w,Q.up) is
the upper bound of ARank(w,Q).

Having Wt, the time cost of finding Q.low and Q.up is reduced from O(|Q|×
|W |) to only O(|Q| × d), where d is the dimension of data. Considering that
|Q| × d is much smaller than the size of the data set, the overhead of finding
Q.low and Q.up is very small.

5 Tree-Pruning Method (TPM)

To enhance efficiency, our first approach, which is the tree pruning method
(TPM), indexes the data set P with the R-tree to group similar points and
uses the bounds of MBRs (i.e., the R-tree entries) to reduce computing costs.

Fig. 4. The partitioned space of BelowQ, InQ and AboveQ based on Q.low and Q.up
with a single wi in 2d space of data set P .

First, we introduce how TPM filters P with Q.low and Q.up. Figure 4 shows
the geometric view for an example of two-dimensional data. The two dashed
lines cross the boundaries (Q.low and Q.up), and they are perpendicular to the
weighting vector wi. The space is partitioned into three parts, which are marked
as BelowQ, InQ, and AboveQ in Fig. 4. For example, e2 is in BelowQ and e5 is
in AboveQ. MBRs in BelowQ and AboveQ can be filtered by checking the upper
and lower boundaries. Formally, the pruning rules are as follows.
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– Rule 1. (MBR in BelowQ) If f(w, ep.up) < f(w,Q.low), count the number of
points in ep because ∀p ∈ ep,∀q ∈ Q, f(w, q) > f(w, p) holds.

– Rule 2. (MBR in AboveQ) If f(w, ep.low) > f(w,Q.up), then discard ep
because ∀p ∈ ep,∀q ∈ Q, f(w, q) < f(w, p) holds.

– Rule 3. (MBR in InQ) If f(w, ei.low) > f(w,Q.low) and f(w, ei.up) <
f(w,Q.up), then add ei to candidate for further examination.

Algorithm 1. ARank-P
Input: P,w,Q,minRank
Output: include: rnk; discard: -1;
1: rnk ⇐ 0, Cand ⇐ ∅
2: heapP.enqueue(RtreeP.Root())
3: while heapP.isNotEmpty() do
4: ep ⇐ heapP.dequeue()
5: for each ei ∈ ep do
6: if f(w, ei.low) < f(w,Q.up) then
7: if ei in BelowQ then
8: rnk ⇐ rnk + ei.size() × |Q| //Rule 1
9: if rnk ≥ minRank then
10: return -1
11: else if ei in InQ then
12: Cand ⇐ Cand ∪ ei //Rule 3
13: else
14: if ei is a data point then
15: Cand ⇐ Cand ∪ ei
16: else
17: heapP.enqueue(ei)
18: Refine Cand by processing the MBRs and points in Cand with each q.
19: if rnk ≤ minRank then
20: return rnk
21: else
22: return -1

ARank-P Algorithm. Given P , w, Q, and the positive integer minRank,
the ARank algorithm checks whether the aggregate rank of Q is smaller than
the given minRank. It also returns the value of the aggregate rank when
ARank(w,Q) < minRank. As shown by Algorithm1, ARank uses the R-tree
to prune similar points in a group (MBR). In this algorithm, the counter rnk is
used to count the aggregate rank of Q (Line 1). Then, the algorithm recursively
checks the MBRs in the R-tree of P from the root (Line 2). If ei belongs to
BelowQ, the counter rnk is increased by ei.size() × |Q| (Lines 7–8) based on
Lemma 1. When rnk becomes greater than minRank, the algorithm returns −1
to terminate (Lines 9–10). If ei in InQ, we add ei into the candidate set Cand
for refinement (Lines 11–12). In other situations, when a leaf node of entries is
encountered, the point is added into Cand for refinement (Lines 14–15). Other-
wise, ei is added to the queue (Line 17). After traversal of RtreeP, refinement
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Algorithm 2. Tree-Pruning Method (TPM)
Input: P,W,Q
Output: result set heap
1: initialize heap with first k weighting vectors and aggregate ranks of |Q|
2: minRank ⇐ heap’s last rank.
3: for each w ∈ W− {first k element in W} do
4: rnk ⇐ ARank-P(P,w,Q,minRank)
5: if rnk ̸= −1 then
6: heap.insert(w, rnk)
7: minRank ⇐ last rank of heap.
8: return heap

is performed where the Cand set is checked for each q ∈ Q and rnk is updated
(Line 18). Note that Cand contains both the MBR and single p in the space
part of InQ. The refinement also considers the upper and lower bounds of the
MBR to filter each q. Finally, rnk is the aggregate rank if rnk < minRank or
−1 is returned, which indicates that the current w is not a result.

TPM Algorithm. The TPM algorithm first initializes heap with the first k
weighting vectors and their aggregate ranks of Q (Line 1). Then, for the other
weighting vectors, the ARank-P Algorithm is called to check the aggregate rank
of the query set Q (Line 4). If the current w can make the rank of Q better than
the last rank in heap, this w is inserted into heap with its rank. Then, heap
automatically updates itself by removing the last element and inserting a new
w and aggregate rank while keeping the sorted order of rank (Line 6). Then,
minRank is updated by the last rank in the updated heap (Line 7). Eventually,
the algorithm returns heap as the result of the aggregate reverse k-rank query.

6 Double-Tree Method (DTM)

TPM uses an R-tree to manage similar p and avoid computing with MBRs.
However, TPM is limited in that it evaluates each w one by one, and its efficiency
declines when theW set is large. This limitation inspired us to remove redundant
computing by grouping similar w. We propose the double-tree method (DTM),
which also indexes W set in an R-tree. The R-trees for P and W are denoted as
RtreeP and RtreeW , respectively. Figure 5 shows the three parts of BelowQ,
InQ and AboveQ, which are separated by the bounds of the MBR ew in RtreeW
and Q.up (Q.low). Based on the MBR features in RtreeP and RtreeW , we can
obtain the score bounds of a single data point on the MBR ew of RtreeW .

Lemma 2 (Score bound of p): Given an MBR with the weighting vector ew
in RtreeW and p ∈ P , the score f(w, p) is lower-bounded by f(ew.low, p) and
upper-bounded by f(ew.up, p).

Proof. For w ∈ ew, ∀w[i] ≥ ew.low[i] holds, so
∑d

i=1 ew.low[i] · p[i] ≤
∑d

i=1 w[i] ·
p[i] hence f(w, p) ≥ f(ew.low, p). Similarly, f(w, p) ≤ f(ew.up, p).
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Fig. 5. The space part of BelowQ, InQ and AboveQ based on Q.low and Q.up with a
MBR ew in 2d space of data set P .

The score bounds of the MBR ep of RtreeP based on ew of RtreeW can also
be inferred from the following lemma.

Lemma 3 (Score bound of MBR): Given the MBR ew of RtreeW and MBR ep
of RtreeP , the score of every p ∈ ep is lower-bounded by f(ew.low, ep.low) and
upper-bounded by f(ew.up, ep.up).

Proof. For p ∈ ep, ∀i, p[i] ≤ ep.low[i] holds based on the proof in Lemma2,
so

∑d
i=1 ew.low[i] · ep.low[i] ≤

∑d
i=1 ew[i].low · p[i] ≤

∑d
i=1 w[i] · p[i]. Hence,

f(w, p) ≥ f(ew.low, ep.low). Similarly, f(w, p) ≤ f(ew.up, ep.up) holds.

Based on the above lemmas, we can build the bounds of the aggregate rank
for Q on the MBR ew.

Theorem 2 (Aggregate rank bounds of Q for ew): Given the set of query points
Q and the MBR of the weighting vector ew, the lower bound of rank for every
w ∈ ew is |Q| × rank(ew.low,Q.low), and the upper bound of ARank(w,Q) is
|Q| × rank(ew.up,Q.up).

Proof. This is similar to the proof for Lemma1.

The ARank-P algorithm checks the rank of Q with the single w. This time,
we propose using ARank-WP to check a group of w, ew. For ew, Algorithm3
helps check these w ∈ ew with Q and minRank. The algorithm returns 1 if all
w ∈ ew make the Q rank in minRank and returns −1 if none of w ∈ ew makes
Q rank better than minRank. The algorithm returns 0 if it needs to check the
child entries of ew.

Unlike the TPM algorithm in Sect. 5, DTM uses two R-trees to index the P
and W . Hence, it can prune both the weighting vectors and points. Algorithm4
starts from the root of RtreeW and calls Algorithm3 to check the aggregate
rank of Q on ew (Line 9). If flag is 0, all child MBRs are added to heapW for
the next loop (Lines 10–11). If flag is 1, this means that every w in ew makes
Q rank better than minRank. Thus, we can call Algorithm1 to compute the
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Algorithm 3. ARank-WP
Input: P, ew, Q,minRank
Output: include: 1; discard: -1; uncertain : 0;
1: rnk ⇐ 0, Cand ⇐ ∅
2: heapP.enqueue(RtreeP.root())
3: while heapP.isNotEmpty() do
4: ep ⇐ heapP.dequeue()
5: for each ei ∈ ep do
6: if f(ew.low, ei.low) < f(ew.up,Q.up) then
7: if ei in BelowQ then
8: rnk ⇐ rnk + ei.size() × |Q|
9: if rnk ≥ minRank then
10: return -1
11: else if ei in InQ then
12: Cand ⇐ Cand ∪ ei
13: else
14: if ei is a data point then
15: Cand ⇐ Cand ∪ ei
16: else
17: heapP.enqueue(ei)
18: Refine Cand and process the MBRs and points in Cand with each q.
19: if rnk ≤ minRank then
20: return 1
21: else
22: return 0

Algorithm 4. Double-tree method (DTM)
Input: P,W,Q
Output: result set heap
1: initialize heap with the first k weighting vectors and the aggregate ranks of |Q|
2: minRank ⇐ heap’s last rank.
3: heapW.enqueue(RtreeW.root())
4: while heapW.isNotEmpty() do
5: ew ⇐ heapW.dequeue()
6: if ew is a single weighting vector then
7: call the function ARank-P and update minRank.
8: else
9: flag ⇐ ARank-WP(P, ew, Q,minRank)
10: if flag = 0 then
11: heapW.enqueue(all subMBR ∈ ew)
12: else
13: if flag = 1 then
14: for each w ∈ ew do
15: call the function ARank-P and update minRank.
16: return heap
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rank of each w in ew and update heap and minRank (Lines 14–15). When the
leaf node of a single w is being checked, Algorithm1 is called just like in TPM
(Lines 6–7). When the algorithm terminates, heap is returned as the result of
the aggregate reverse rank query.

Table 1 summarizes the comparison of space and time complexities for NA
(naive) and the proposed TPM and DTM. NA has the highest cost in terms of
time complexity because O(|P | · |W |). However, it requires no extra index and
only needs O(k) space complexity. The proposed TPM and DTM algorithms
need space to store the R-tree but have lower computation costs.

Table 1. Time complexity, space complexity for algorithms NA, TPM and DTM.

Algorithm Index Time complexity Space complexity

NA None O(|P | · |W |) O(k)

TPM RtreeP O(|W | · log |P |) O(log |P |)
DTM RtreeP, RtreeW O(log |W | · log |P |) O(log |P |+ log |W |)

7 Experiment

We present the experimental evaluation of the naive, TPM, and DTM algorithms
for AR-k. All algorithms were implemented in C++, and the experiments were
run on a Mac with 2.6GHz Intel Core i7, 16GB RAM. The page size was 4K.

Data Set. Both synthetic and real data were employed for the data set P .
The synthetic data sets were uniform (UN), clustered (CL) and anti-correlated
(AC) with an attribute value range of [0, 1) that were generated as in [13,18].
We also performed comparison experiments on two real data sets: HOUSE and
NBA2. HOUSE contains 201760 six-dimensional tuples and represents the annual
payments of American families (gas, electricity, water, heating, insurance, and
property tax) in 2013. NBA is a 20960-tuple data set of box scores of players
in the NBA from 1949 to 2009. We extracted the NBA statistics for points,
rebounds, assists, blocks, and steals to form a 5-d vector that represents a player.
For data set W , we also had the UN and CL data sets, which were generated in
the same manner as the data sets of P . We generated Q by using clustered data.

Experimental Results for Synthetic Data. Figure 6 shows the experimental
results for the synthetic data sets (UN, CL, AC) with varying dimensions d (2–5),
where both data sets P and W contained 100K tuples. Q had five query points,
and we wanted to find the five best preferences (k = 5) for this Q. Figures 6a–c
show that TPM and DTM were at least 10 times faster than NA in terms of
CPU time. DTM performed the best because it skipped checking each p and
w and was stable for all dimensional cases. Tree-based methods perform less
querying for CL data than other data distributions because it is easier to index
clustered data with the R-tree. Figures 6d–f show that DTM had less I/O usage
2 NBA: http://www.databasebasketball.com/; HOUSE: https://usa.ipums.org/usa/.

http://www.databasebasketball.com/
https://usa.ipums.org/usa/


Aggregate Reverse Rank Queries 99

Fig. 6. Comparison results of CPU time (a, b and c), I/O cost (d, e, f) and Pairwise
computations (g, h and i) on synthetic data, |P | = |W | = 100K, all with |Q| = 5, k = 10.

than TPM for all kinds of data. Figures 6g–i show pairwise computations with
p and w for calculating the scores. DTM needed fewer computations because it
can prune both points and weighting vectors with double R-trees.

Experimental Results for Real Data. Figure 7a shows the performance with
the HOUSE data set and different k (10–50). DTM again performed the best.
We found that the major dimensions of HOUSE were similar to an exponential
distribution. The NBA data set was used to solve another practical query: who
likes a team more than others? We selected five, ten, and fifteen players from the
same team as Q and then generated the data set W as various user preferences.
As expected, DTM found the answer the fastest. Figure 7c shows the I/O cost of
the two proposed tree-base algorithms (TPM and DTM). DTM required less I/O
usage.
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Fig. 7. Real data, HOUSE and NBA, W :UN, |W | = 100K, k = 10.

Fig. 8. Scalability on varying |P |,|W | (k = 5, |Q| = 5, d = 4); varying k (|P | = |W | =
100K, |Q| = 5); varying |Q| (|P | = |W | = 100K, k = 5).

Scalability. Figure 8a shows the scalable property for varying |P | and |W |.
The CPU cost of DTM increased slightly with increasing |P | and |W | because
most pairwise computations were filtered by R-treeW and R-treeP. According to
Figs. 8b and c, all of the algorithms were insensitive to k and |Q| because both
were far smaller in value than the cardinality of |P | and |W |.

8 Conclusion

Reverse rank queries have become important tools in marketing analyzing. How-
ever, related research on reverse rank queries has only focused on one product.
We propose the aggregate reverse rank query to address the situation of multiple
query products for applying to the product bundling. We devised the TPM and
DTM methods for efficient querying. TPM is a tree-based pruning method that
prunes unnecessary products with the help of an R-tree. DTM uses two R-trees
to manage products and user preferences and prune both of them. We compared
the methods through experiments on both synthetic data and real data and the
results show that DTM is the most efficient one.

As future work, we first plan to investigate approaches for other ARank
functions, such as evaluating the aggregate rank by the harmonic average of
each rank. We also want to consider approximate solutions for AR-k queries.
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